-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsh-math.py
70 lines (63 loc) · 1.04 KB
/
sh-math.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
def isPrime_v1(n):
if n < 2:
return False
else:
for i in range(2, n):
if n % i == 0:
return False
return True
def isPrime_v2(n):
if n < 2:
return False
if n % 2 == 0:
if n == 2:
return True
else:
return False
i = 3
while i <= (n ** 0.5):
if n % i == 0:
return False
i += 2
return True
def isPrime_v3(n):
if n < 2:
return False
if n == 2:
return True
if n == 3:
return True
if (n ** 0.5) >= 2:
if n % 2 == 0:
return False
if (n ** 0.5) >= 3:
if n % 3 == 0:
return False
i = 6
while (i - 1) <= (n ** 0.5):
if (n % (i - 1) == 0) or (n % (i + 1) == 0):
return False
i += 6
return True
def prime_factorizer(n):
if n < 2:
return []
prime_factors = []
while n % 2 == 0:
if prime_factors:
prime_factors[0][1] += 1
else:
prime_factors.append([2, 1])
n //= 2
i = 3
while i <= (n ** 0.5):
while n % i == 0:
try:
prime_factors[-1][1] += 1
except IndexError:
prime_factors.append([i, 1])
n //= i
i += 2
if n > 1:
prime_factors.append([n, 1])
return prime_factors