-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path436. Find Right Interval.cpp
73 lines (49 loc) · 1.73 KB
/
436. Find Right Interval.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
You are given an array of intervals, where
intervals[i] = [starti, endi] and each starti is unique.
The right interval for an interval i is an interval j
such that startj >= endi and startj is minimized.
Note that i may equal j.
Return an array of right interval indices for each
interval i. If no right interval exists for
interval i, then put -1 at index i.
Example 1:
Input: intervals = [[1,2]]
Output: [-1]
Explanation: There is only one interval in the collection, so it outputs -1.
Example 2:
Input: intervals = [[3,4],[2,3],[1,2]]
Output: [-1,0,1]
Explanation: There is no right interval for [3,4].
The right interval for [2,3] is [3,4] since start0 = 3 is the smallest start that is >= end1 = 3.
The right interval for [1,2] is [2,3] since start1 = 2 is the smallest start that is >= end2 = 2.
Example 3:
Input: intervals = [[1,4],[2,3],[3,4]]
Output: [-1,2,-1]
Explanation: There is no right interval for [1,4] and [3,4].
The right interval for [2,3] is [3,4] since start2 = 3 is the smallest start that is >= end1 = 3.
Constraints:
1 <= intervals.length <= 2 * 104
intervals[i].length == 2
-106 <= starti <= endi <= 106
The start point of each interval is unique.
// TC -> O(nlogn)
// SC -> O(n)
class Solution {
public:
vector<int> findRightInterval(vector<vector<int>>& intervals) {
int n = intervals.size();
vector <int> res(n);
map <int, int> mp;
for (int i = 0; i < n; i++)
mp[intervals[i][0]] = i;
for (int i = 0; i < n; i++) {
int e = intervals[i][1];
auto index = mp.lower_bound(e);
if (index != mp.end())
res[i] = (*index).second;
else
res[i] = -1;
}
return res;
}
};