-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path54. Spiral Matrix.cpp
105 lines (64 loc) · 2.09 KB
/
54. Spiral Matrix.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
Given an m x n matrix, return all elements of the matrix in spiral order.
Example 1:
Input: matrix = [[1,2,3],
[4,5,6],
[7,8,9]]
Output: [1,2,3,6,9,8,7,4,5]
Example 2:
Input: matrix = [[1,2,3,4],
[5,6,7,8],
[9,10,11,12]]
Output: [1,2,3,4,8,12,11,10,9,5,6,7]
Constraints:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 10
-100 <= matrix[i][j] <= 100
********************************************************************************
# Approach 1: CLockwise Spiral
class Solution {
public:
vector<int> spiralOrder(vector<vector<int>>& matrix) {
vector<int> res;
int m = matrix.size(), n = matrix[0].size();
int r = 0, c = 0;
while (r < m && c < n) {
for (int i = c; i < n; i++) res.push_back(matrix[r][i]);
r++;
for (int i = r; i < m; i++) res.push_back(matrix[i][n - 1]);
n--;
if (r >= m || c >= n) break;
for (int i = n - 1; i >= c; i--) res.push_back(matrix[m - 1][i]);
m--;
for (int i = m - 1; i >= r; i--) res.push_back(matrix[i][c]);
c++;
}
return res;
}
};
TC -> O(m * n), m, n is the size of the matrix
SC -> O(1)
********************************************************************************
# Approach 2: Counter Clockwise Spiral (Not asked in the above problem)
class Solution {
public:
vector<int> spiralOrder(vector<vector<int>>& matrix) {
vector<int> res;
int m = matrix.size(), n = matrix[0].size();
int r = 0, c = 0;
while (r < m && c < n) {
for (int i = r; i < m; i++) res.push_back(matrix[i][c]);
c++;
for (int i = c; i < n; i++) res.push_back(matrix[m - 1][i]);
m--;
if (r >= m || c >= n) break;
for (int i = m - 1; i >= r; i--) res.push_back(matrix[i][n - 1]);
n--;
for (int i = n - 1; i >= c; i--) res.push_back(matrix[r][i]);
r++;
}
return res;
}
};
TC -> O(m * n), m, n is the size of the matrix
SC -> O(1)