|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": { |
| 6 | + "id": "Tce3stUlHN0L" |
| 7 | + }, |
| 8 | + "source": [ |
| 9 | + "##### Copyright 2021 The TensorFlow Authors." |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "code", |
| 14 | + "execution_count": 1, |
| 15 | + "metadata": { |
| 16 | + "cellView": "form", |
| 17 | + "id": "tuOe1ymfHZPu" |
| 18 | + }, |
| 19 | + "outputs": [], |
| 20 | + "source": [ |
| 21 | + "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n", |
| 22 | + "# you may not use this file except in compliance with the License.\n", |
| 23 | + "# You may obtain a copy of the License at\n", |
| 24 | + "#\n", |
| 25 | + "# https://www.apache.org/licenses/LICENSE-2.0\n", |
| 26 | + "#\n", |
| 27 | + "# Unless required by applicable law or agreed to in writing, software\n", |
| 28 | + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", |
| 29 | + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", |
| 30 | + "# See the License for the specific language governing permissions and\n", |
| 31 | + "# limitations under the License." |
| 32 | + ] |
| 33 | + }, |
| 34 | + { |
| 35 | + "cell_type": "markdown", |
| 36 | + "metadata": { |
| 37 | + "id": "qFdPvlXBOdUN" |
| 38 | + }, |
| 39 | + "source": [ |
| 40 | + "# Apache ORC Reader" |
| 41 | + ] |
| 42 | + }, |
| 43 | + { |
| 44 | + "cell_type": "markdown", |
| 45 | + "metadata": { |
| 46 | + "id": "MfBg1C5NB3X0" |
| 47 | + }, |
| 48 | + "source": [ |
| 49 | + "<table class=\"tfo-notebook-buttons\" align=\"left\">\n", |
| 50 | + " <td>\n", |
| 51 | + " <a target=\"_blank\" href=\"https://www.tensorflow.org/io/tutorials/orc\"><img src=\"https://www.tensorflow.org/images/tf_logo_32px.png\" />View on TensorFlow.org</a>\n", |
| 52 | + " </td>\n", |
| 53 | + " <td>\n", |
| 54 | + " <a target=\"_blank\" href=\"https://colab.research.google.com/github/tensorflow/io/blob/master/docs/tutorials/orc.ipynb\"><img src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" />Run in Google Colab</a>\n", |
| 55 | + " </td>\n", |
| 56 | + " <td>\n", |
| 57 | + " <a target=\"_blank\" href=\"https://github.com/tensorflow/io/blob/master/docs/tutorials/orc.ipynb\"><img src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\" />View on GitHub</a>\n", |
| 58 | + " </td>\n", |
| 59 | + " <td>\n", |
| 60 | + " <a href=\"https://storage.googleapis.com/tensorflow_docs/io/docs/tutorials/orc.ipynb\"><img src=\"https://www.tensorflow.org/images/download_logo_32px.png\" />Download notebook</a>\n", |
| 61 | + " </td>\n", |
| 62 | + "</table>" |
| 63 | + ] |
| 64 | + }, |
| 65 | + { |
| 66 | + "cell_type": "markdown", |
| 67 | + "metadata": { |
| 68 | + "id": "xHxb-dlhMIzW" |
| 69 | + }, |
| 70 | + "source": [ |
| 71 | + "## Overview\n", |
| 72 | + "\n", |
| 73 | + "Apache ORC is a popular columnar storage format. tensorflow-io package provides a default implementation of reading [Apache ORC](https://orc.apache.org/) files." |
| 74 | + ] |
| 75 | + }, |
| 76 | + { |
| 77 | + "cell_type": "markdown", |
| 78 | + "metadata": { |
| 79 | + "id": "MUXex9ctTuDB" |
| 80 | + }, |
| 81 | + "source": [ |
| 82 | + "## Setup" |
| 83 | + ] |
| 84 | + }, |
| 85 | + { |
| 86 | + "cell_type": "markdown", |
| 87 | + "metadata": { |
| 88 | + "id": "1Eh-iCRVBm0p" |
| 89 | + }, |
| 90 | + "source": [ |
| 91 | + "Install required packages, and restart runtime\n" |
| 92 | + ] |
| 93 | + }, |
| 94 | + { |
| 95 | + "cell_type": "code", |
| 96 | + "execution_count": 2, |
| 97 | + "metadata": { |
| 98 | + "id": "g7cxbf1-skn6" |
| 99 | + }, |
| 100 | + "outputs": [], |
| 101 | + "source": [ |
| 102 | + "!pip install tensorflow-io" |
| 103 | + ] |
| 104 | + }, |
| 105 | + { |
| 106 | + "cell_type": "code", |
| 107 | + "execution_count": 3, |
| 108 | + "metadata": { |
| 109 | + "id": "IqR2PQG4ZaZ0" |
| 110 | + }, |
| 111 | + "outputs": [], |
| 112 | + "source": [ |
| 113 | + "import tensorflow as tf\n", |
| 114 | + "import tensorflow_io as tfio" |
| 115 | + ] |
| 116 | + }, |
| 117 | + { |
| 118 | + "cell_type": "markdown", |
| 119 | + "metadata": { |
| 120 | + "id": "EyHfC3nEzseN" |
| 121 | + }, |
| 122 | + "source": [ |
| 123 | + "### Download a sample dataset file in ORC" |
| 124 | + ] |
| 125 | + }, |
| 126 | + { |
| 127 | + "cell_type": "markdown", |
| 128 | + "metadata": { |
| 129 | + "id": "ZjEeF6Fva8UO" |
| 130 | + }, |
| 131 | + "source": [ |
| 132 | + "The dataset you will use here is the [Iris Data Set](https://archive.ics.uci.edu/ml/datasets/iris) from UCI. The data set contains 3 classes of 50 instances each, where each class refers to a type of iris plant. It has 4 attributes: (1) sepal length, (2) sepal width, (3) petal length, (4) petal width, and the last column contains the class label." |
| 133 | + ] |
| 134 | + }, |
| 135 | + { |
| 136 | + "cell_type": "code", |
| 137 | + "execution_count": 4, |
| 138 | + "metadata": { |
| 139 | + "id": "zaiXjZiXzrHs" |
| 140 | + }, |
| 141 | + "outputs": [], |
| 142 | + "source": [ |
| 143 | + "!curl -OL https://github.com/tensorflow/io/raw/master/tests/test_orc/iris.orc\n", |
| 144 | + "!ls -l iris.orc" |
| 145 | + ] |
| 146 | + }, |
| 147 | + { |
| 148 | + "cell_type": "markdown", |
| 149 | + "metadata": { |
| 150 | + "id": "7DG9JTJ0-bzg" |
| 151 | + }, |
| 152 | + "source": [ |
| 153 | + "## Create a dataset from the file" |
| 154 | + ] |
| 155 | + }, |
| 156 | + { |
| 157 | + "cell_type": "code", |
| 158 | + "execution_count": 35, |
| 159 | + "metadata": { |
| 160 | + "id": "ppFAjXAYsj-z" |
| 161 | + }, |
| 162 | + "outputs": [], |
| 163 | + "source": [ |
| 164 | + "dataset = tfio.IODataset.from_orc(\"iris.orc\", capacity=15).batch(1)" |
| 165 | + ] |
| 166 | + }, |
| 167 | + { |
| 168 | + "cell_type": "markdown", |
| 169 | + "metadata": { |
| 170 | + "id": "4xPr3f4LVdeN" |
| 171 | + }, |
| 172 | + "source": [ |
| 173 | + "Examine the dataset:" |
| 174 | + ] |
| 175 | + }, |
| 176 | + { |
| 177 | + "cell_type": "code", |
| 178 | + "execution_count": 42, |
| 179 | + "metadata": { |
| 180 | + "id": "9B1QUKG70Lzs" |
| 181 | + }, |
| 182 | + "outputs": [], |
| 183 | + "source": [ |
| 184 | + "for item in dataset.take(1):\n", |
| 185 | + " print(item)\n" |
| 186 | + ] |
| 187 | + }, |
| 188 | + { |
| 189 | + "cell_type": "markdown", |
| 190 | + "metadata": { |
| 191 | + "id": "03qncHJPVNK3" |
| 192 | + }, |
| 193 | + "source": [ |
| 194 | + "Let's walk through an end-to-end example of tf.keras model training with ORC dataset based on iris dataset." |
| 195 | + ] |
| 196 | + }, |
| 197 | + { |
| 198 | + "cell_type": "markdown", |
| 199 | + "metadata": { |
| 200 | + "id": "tDkpKRMVcPfb" |
| 201 | + }, |
| 202 | + "source": [ |
| 203 | + "### Data preprocessing" |
| 204 | + ] |
| 205 | + }, |
| 206 | + { |
| 207 | + "cell_type": "markdown", |
| 208 | + "metadata": { |
| 209 | + "id": "nDgkfWFRVjKz" |
| 210 | + }, |
| 211 | + "source": [ |
| 212 | + "Configure which columns are features, and which column is label:" |
| 213 | + ] |
| 214 | + }, |
| 215 | + { |
| 216 | + "cell_type": "code", |
| 217 | + "execution_count": 47, |
| 218 | + "metadata": { |
| 219 | + "id": "R1OYAybz07dr" |
| 220 | + }, |
| 221 | + "outputs": [], |
| 222 | + "source": [ |
| 223 | + "feature_cols = [\"sepal_length\", \"sepal_width\", \"petal_length\", \"petal_width\"]\n", |
| 224 | + "label_cols = [\"species\"]\n", |
| 225 | + "\n", |
| 226 | + "# select feature columns\n", |
| 227 | + "feature_dataset = tfio.IODataset.from_orc(\"iris.orc\", columns=feature_cols)\n", |
| 228 | + "# select label columns\n", |
| 229 | + "label_dataset = tfio.IODataset.from_orc(\"iris.orc\", columns=label_cols)" |
| 230 | + ] |
| 231 | + }, |
| 232 | + { |
| 233 | + "cell_type": "markdown", |
| 234 | + "metadata": { |
| 235 | + "id": "GSYMP48vVvV0" |
| 236 | + }, |
| 237 | + "source": [ |
| 238 | + "A util function to map species to float numbers for model training:" |
| 239 | + ] |
| 240 | + }, |
| 241 | + { |
| 242 | + "cell_type": "code", |
| 243 | + "execution_count": 48, |
| 244 | + "metadata": { |
| 245 | + "id": "TQvuE7OgVs1q" |
| 246 | + }, |
| 247 | + "outputs": [], |
| 248 | + "source": [ |
| 249 | + "vocab_init = tf.lookup.KeyValueTensorInitializer(\n", |
| 250 | + " keys=tf.constant([\"virginica\", \"versicolor\", \"setosa\"]),\n", |
| 251 | + " values=tf.constant([0, 1, 2], dtype=tf.int64))\n", |
| 252 | + "vocab_table = tf.lookup.StaticVocabularyTable(\n", |
| 253 | + " vocab_init,\n", |
| 254 | + " num_oov_buckets=4)" |
| 255 | + ] |
| 256 | + }, |
| 257 | + { |
| 258 | + "cell_type": "code", |
| 259 | + "execution_count": 49, |
| 260 | + "metadata": { |
| 261 | + "id": "lpf0w41iWAZ4" |
| 262 | + }, |
| 263 | + "outputs": [], |
| 264 | + "source": [ |
| 265 | + "label_dataset = label_dataset.map(vocab_table.lookup)\n", |
| 266 | + "dataset = tf.data.Dataset.zip((feature_dataset, label_dataset))\n", |
| 267 | + "dataset = dataset.batch(1)\n", |
| 268 | + "\n", |
| 269 | + "def pack_features_vector(features, labels):\n", |
| 270 | + " \"\"\"Pack the features into a single array.\"\"\"\n", |
| 271 | + " features = tf.stack(list(features), axis=1)\n", |
| 272 | + " return features, labels\n", |
| 273 | + "\n", |
| 274 | + "dataset = dataset.map(pack_features_vector)" |
| 275 | + ] |
| 276 | + }, |
| 277 | + { |
| 278 | + "cell_type": "markdown", |
| 279 | + "metadata": { |
| 280 | + "id": "R1Tyf3AodC2Y" |
| 281 | + }, |
| 282 | + "source": [ |
| 283 | + "## Build, compile and train the model" |
| 284 | + ] |
| 285 | + }, |
| 286 | + { |
| 287 | + "cell_type": "markdown", |
| 288 | + "metadata": { |
| 289 | + "id": "oVB9Q0B-WDn4" |
| 290 | + }, |
| 291 | + "source": [ |
| 292 | + "Finally, you are ready to build the model and train it! You will build a 3 layer keras model to predict the class of the iris plant from the dataset you just processed." |
| 293 | + ] |
| 294 | + }, |
| 295 | + { |
| 296 | + "cell_type": "code", |
| 297 | + "execution_count": 50, |
| 298 | + "metadata": { |
| 299 | + "id": "tToy0FoOWG-9" |
| 300 | + }, |
| 301 | + "outputs": [], |
| 302 | + "source": [ |
| 303 | + "model = tf.keras.Sequential(\n", |
| 304 | + " [\n", |
| 305 | + " tf.keras.layers.Dense(\n", |
| 306 | + " 10, activation=tf.nn.relu, input_shape=(4,)\n", |
| 307 | + " ),\n", |
| 308 | + " tf.keras.layers.Dense(10, activation=tf.nn.relu),\n", |
| 309 | + " tf.keras.layers.Dense(3),\n", |
| 310 | + " ]\n", |
| 311 | + ")\n", |
| 312 | + "\n", |
| 313 | + "model.compile(optimizer=\"adam\", loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=[\"accuracy\"])\n", |
| 314 | + "model.fit(dataset, epochs=5)" |
| 315 | + ] |
| 316 | + } |
| 317 | + ], |
| 318 | + "metadata": { |
| 319 | + "colab": { |
| 320 | + "collapsed_sections": [ |
| 321 | + "Tce3stUlHN0L" |
| 322 | + ], |
| 323 | + "name": "orc.ipynb", |
| 324 | + "toc_visible": true |
| 325 | + }, |
| 326 | + "kernelspec": { |
| 327 | + "display_name": "Python 3", |
| 328 | + "name": "python3" |
| 329 | + } |
| 330 | + }, |
| 331 | + "nbformat": 4, |
| 332 | + "nbformat_minor": 0 |
| 333 | +} |
0 commit comments