|
38 | 38 | 1 penalty <named list [2]> model_spec linear_reg main
|
39 | 39 | 2 mixture <named list [2]> model_spec linear_reg main
|
40 | 40 |
|
| 41 | +--- |
| 42 | + |
| 43 | + Code |
| 44 | + tunable(spec %>% set_engine("glmnet", dfmax = tune())) |
| 45 | + Output |
| 46 | + # A tibble: 3 x 5 |
| 47 | + name call_info source component component_id |
| 48 | + <chr> <list> <chr> <chr> <chr> |
| 49 | + 1 penalty <named list [2]> model_spec linear_reg main |
| 50 | + 2 mixture <named list [3]> model_spec linear_reg main |
| 51 | + 3 dfmax <NULL> model_spec linear_reg engine |
| 52 | + |
41 | 53 | # tunable.logistic_reg()
|
42 | 54 |
|
43 | 55 | Code
|
|
78 | 90 | 1 penalty <named list [2]> model_spec logistic_reg main
|
79 | 91 | 2 mixture <named list [2]> model_spec logistic_reg main
|
80 | 92 |
|
| 93 | +--- |
| 94 | + |
| 95 | + Code |
| 96 | + tunable(spec %>% set_engine("glmnet", dfmax = tune())) |
| 97 | + Output |
| 98 | + # A tibble: 3 x 5 |
| 99 | + name call_info source component component_id |
| 100 | + <chr> <list> <chr> <chr> <chr> |
| 101 | + 1 penalty <named list [2]> model_spec logistic_reg main |
| 102 | + 2 mixture <named list [3]> model_spec logistic_reg main |
| 103 | + 3 dfmax <NULL> model_spec logistic_reg engine |
| 104 | + |
81 | 105 | # tunable.multinom_reg()
|
82 | 106 |
|
83 | 107 | Code
|
|
141 | 165 | 1 penalty <named list [2]> model_spec multinom_reg main
|
142 | 166 | 2 mixture <named list [2]> model_spec multinom_reg main
|
143 | 167 |
|
| 168 | +--- |
| 169 | + |
| 170 | + Code |
| 171 | + tunable(spec %>% set_engine("glmnet", dfmax = tune())) |
| 172 | + Output |
| 173 | + # A tibble: 3 x 5 |
| 174 | + name call_info source component component_id |
| 175 | + <chr> <list> <chr> <chr> <chr> |
| 176 | + 1 penalty <named list [2]> model_spec multinom_reg main |
| 177 | + 2 mixture <named list [2]> model_spec multinom_reg main |
| 178 | + 3 dfmax <NULL> model_spec multinom_reg engine |
| 179 | + |
144 | 180 | # tunable.boost_tree()
|
145 | 181 |
|
146 | 182 | Code
|
|
203 | 239 | 6 loss_reduction <named list [2]> model_spec boost_tree main
|
204 | 240 | 7 sample_size <named list [2]> model_spec boost_tree main
|
205 | 241 |
|
| 242 | +--- |
| 243 | + |
| 244 | + Code |
| 245 | + tunable(spec %>% set_engine("xgboost", feval = tune())) |
| 246 | + Output |
| 247 | + # A tibble: 9 x 5 |
| 248 | + name call_info source component component_id |
| 249 | + <chr> <list> <chr> <chr> <chr> |
| 250 | + 1 tree_depth <named list [2]> model_spec boost_tree main |
| 251 | + 2 trees <named list [2]> model_spec boost_tree main |
| 252 | + 3 learn_rate <named list [3]> model_spec boost_tree main |
| 253 | + 4 mtry <named list [2]> model_spec boost_tree main |
| 254 | + 5 min_n <named list [2]> model_spec boost_tree main |
| 255 | + 6 loss_reduction <named list [2]> model_spec boost_tree main |
| 256 | + 7 sample_size <named list [2]> model_spec boost_tree main |
| 257 | + 8 stop_iter <named list [2]> model_spec boost_tree main |
| 258 | + 9 feval <NULL> model_spec boost_tree engine |
| 259 | + |
206 | 260 | # tunable.rand_forest()
|
207 | 261 |
|
208 | 262 | Code
|
|
251 | 305 | 2 trees <named list [2]> model_spec rand_forest main
|
252 | 306 | 3 min_n <named list [2]> model_spec rand_forest main
|
253 | 307 |
|
| 308 | +--- |
| 309 | + |
| 310 | + Code |
| 311 | + tunable(spec %>% set_engine("ranger", min.bucket = tune())) |
| 312 | + Output |
| 313 | + # A tibble: 4 x 5 |
| 314 | + name call_info source component component_id |
| 315 | + <chr> <list> <chr> <chr> <chr> |
| 316 | + 1 mtry <named list [2]> model_spec rand_forest main |
| 317 | + 2 trees <named list [2]> model_spec rand_forest main |
| 318 | + 3 min_n <named list [2]> model_spec rand_forest main |
| 319 | + 4 min.bucket <NULL> model_spec rand_forest engine |
| 320 | + |
254 | 321 | # tunable.mars()
|
255 | 322 |
|
256 | 323 | Code
|
|
275 | 342 | 2 prod_degree <named list [2]> model_spec mars main
|
276 | 343 | 3 prune_method <named list [2]> model_spec mars main
|
277 | 344 |
|
| 345 | +--- |
| 346 | + |
| 347 | + Code |
| 348 | + tunable(spec %>% set_engine("earth", minspan = tune())) |
| 349 | + Output |
| 350 | + # A tibble: 4 x 5 |
| 351 | + name call_info source component component_id |
| 352 | + <chr> <list> <chr> <chr> <chr> |
| 353 | + 1 num_terms <named list [3]> model_spec mars main |
| 354 | + 2 prod_degree <named list [2]> model_spec mars main |
| 355 | + 3 prune_method <named list [2]> model_spec mars main |
| 356 | + 4 minspan <NULL> model_spec mars engine |
| 357 | + |
278 | 358 | # tunable.decision_tree()
|
279 | 359 |
|
280 | 360 | Code
|
|
320 | 400 | 1 tree_depth <named list [2]> model_spec decision_tree main
|
321 | 401 | 2 min_n <named list [2]> model_spec decision_tree main
|
322 | 402 |
|
| 403 | +--- |
| 404 | + |
| 405 | + Code |
| 406 | + tunable(spec %>% set_engine("rpart", parms = tune())) |
| 407 | + Output |
| 408 | + # A tibble: 4 x 5 |
| 409 | + name call_info source component component_id |
| 410 | + <chr> <list> <chr> <chr> <chr> |
| 411 | + 1 tree_depth <named list [2]> model_spec decision_tree main |
| 412 | + 2 min_n <named list [2]> model_spec decision_tree main |
| 413 | + 3 cost_complexity <named list [2]> model_spec decision_tree main |
| 414 | + 4 parms <NULL> model_spec decision_tree engine |
| 415 | + |
323 | 416 | # tunable.svm_poly()
|
324 | 417 |
|
325 | 418 | Code
|
|
346 | 439 | 3 scale_factor <named list [2]> model_spec svm_poly main
|
347 | 440 | 4 margin <named list [2]> model_spec svm_poly main
|
348 | 441 |
|
| 442 | +--- |
| 443 | + |
| 444 | + Code |
| 445 | + tunable(spec %>% set_engine("kernlab", tol = tune())) |
| 446 | + Output |
| 447 | + # A tibble: 5 x 5 |
| 448 | + name call_info source component component_id |
| 449 | + <chr> <list> <chr> <chr> <chr> |
| 450 | + 1 cost <named list [3]> model_spec svm_poly main |
| 451 | + 2 degree <named list [3]> model_spec svm_poly main |
| 452 | + 3 scale_factor <named list [2]> model_spec svm_poly main |
| 453 | + 4 margin <named list [2]> model_spec svm_poly main |
| 454 | + 5 tol <NULL> model_spec svm_poly engine |
| 455 | + |
349 | 456 | # tunable.mlp()
|
350 | 457 |
|
351 | 458 | Code
|
|
399 | 506 | 5 learn_rate <named list [3]> model_spec mlp main
|
400 | 507 | 6 activation <named list [3]> model_spec mlp main
|
401 | 508 |
|
| 509 | +--- |
| 510 | + |
| 511 | + Code |
| 512 | + tunable(spec %>% set_engine("keras", ragged = tune())) |
| 513 | + Output |
| 514 | + # A tibble: 6 x 5 |
| 515 | + name call_info source component component_id |
| 516 | + <chr> <list> <chr> <chr> <chr> |
| 517 | + 1 hidden_units <named list [2]> model_spec mlp main |
| 518 | + 2 penalty <named list [2]> model_spec mlp main |
| 519 | + 3 dropout <named list [2]> model_spec mlp main |
| 520 | + 4 epochs <named list [2]> model_spec mlp main |
| 521 | + 5 activation <named list [2]> model_spec mlp main |
| 522 | + 6 ragged <NULL> model_spec mlp engine |
| 523 | + |
402 | 524 | # tunable.survival_reg()
|
403 | 525 |
|
404 | 526 | Code
|
|
408 | 530 | # i 5 variables: name <chr>, call_info <list>, source <chr>, component <chr>,
|
409 | 531 | # component_id <chr>
|
410 | 532 |
|
| 533 | +--- |
| 534 | + |
| 535 | + Code |
| 536 | + tunable(spec %>% set_engine("survival")) |
| 537 | + Output |
| 538 | + # A tibble: 0 x 5 |
| 539 | + # i 5 variables: name <chr>, call_info <list>, source <chr>, component <chr>, |
| 540 | + # component_id <chr> |
| 541 | + |
| 542 | +--- |
| 543 | + |
| 544 | + Code |
| 545 | + tunable(spec %>% set_engine("survival", parms = tune())) |
| 546 | + Output |
| 547 | + # A tibble: 1 x 5 |
| 548 | + name call_info source component component_id |
| 549 | + <chr> <list> <chr> <chr> <chr> |
| 550 | + 1 parms <NULL> model_spec survival_reg engine |
| 551 | + |
0 commit comments