You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: samples/fsharp/getting-started/BinaryClassification_CreditCardFraudDetection/CreditCardFraudDetection/CreditCardFraudDetection.fsproj
Copy file name to clipboardExpand all lines: samples/fsharp/getting-started/BinaryClassification_CreditCardFraudDetection/CreditCardFraudDetection/Program.fs
Copy file name to clipboardExpand all lines: samples/fsharp/getting-started/BinaryClassification_SentimentAnalysis/SentimentAnalysis/SentimentAnalysisConsoleApp/Program.fs
+1-1
Original file line number
Diff line number
Diff line change
@@ -27,7 +27,7 @@ let buildTrainEvaluateAndSaveModel (mlContext : MLContext) =
Copy file name to clipboardExpand all lines: samples/fsharp/getting-started/BinaryClassification_SentimentAnalysis/SentimentAnalysis/SentimentAnalysisConsoleApp/SentimentAnalysisConsoleApp.fsproj
Copy file name to clipboardExpand all lines: samples/fsharp/getting-started/BinaryClassification_SpamDetection/SpamDetectionConsoleApp/SpamDetectionConsoleApp.fsproj
Copy file name to clipboardExpand all lines: samples/fsharp/getting-started/Clustering_CustomerSegmentation/CustomerSegmentation.Predict/CustomerSegmentation.Predict.fsproj
Copy file name to clipboardExpand all lines: samples/fsharp/getting-started/Clustering_CustomerSegmentation/CustomerSegmentation.Train/CustomerSegmentation.Train.fsproj
@@ -135,7 +135,7 @@ let trainingPipeline = dataProcessPipeline.Append(trainer)
135
135
In this case, `TextLoader` doesn't define explicitly each column, but declares a `Features` property made by the first 32 columns of the file; also declares the property `LastName` to the value of the last column.
136
136
137
137
Then, you need to apply some transformations to the data:
138
-
1) Add a PCA column, using the `mlContext.Transforms.Projection.ProjectToPrincipalComponents("Features", "PCAFeatures", rank = 2)` Estimator, passing as parameter `rank = 2`, which means that we are reducing the features from 32 to 2 dimensions (*x* and *y*)
138
+
1) Add a PCA column, using the `mlContext.Transforms.Projection.ProjectToPrincipalComponents("PCAFeatures", "Features", rank = 2)` Estimator, passing as parameter `rank = 2`, which means that we are reducing the features from 32 to 2 dimensions (*x* and *y*)
139
139
140
140
2) Transform LastName using `OneHotEncodingEstimator`
Copy file name to clipboardExpand all lines: samples/fsharp/getting-started/Clustering_Iris/IrisClustering/IrisClusteringConsoleApp/Clustering_Iris.fsproj
In this introductory sample, you'll see how to use [ML.NET](https://www.microsoft.com/net/learn/apps/machine-learning-and-ai/ml-dotnet) to divide iris flowers into different groups that correspond to different types of iris. In the world of machine learning, this task is known as **clustering**.
8
8
@@ -35,7 +35,7 @@ Building a model includes: uploading data (`iris-full.txt` with `TextLoader`), t
35
35
```fsharp
36
36
// STEP 1: Common data loading configuration
37
37
let textLoader =
38
-
mlContext.Data.CreateTextReader(
38
+
mlContext.Data.CreateTextLoader(
39
39
hasHeader = true,
40
40
separatorChar = '\t',
41
41
columns =
@@ -61,7 +61,7 @@ Building a model includes: uploading data (`iris-full.txt` with `TextLoader`), t
Copy file name to clipboardExpand all lines: samples/fsharp/getting-started/DeepLearning_ImageClassification_TensorFlow/ImageClassification/ImageClassification.Score.fsproj
0 commit comments