|
| 1 | +# SPDX-License-Identifier: Apache-2.0 |
| 2 | +# SPDX-FileCopyrightText: Copyright contributors to the vLLM project |
| 3 | +# ruff: noqa: E501 |
| 4 | +import argparse |
| 5 | +import json |
| 6 | + |
| 7 | +import torch |
| 8 | +import transformers |
| 9 | + |
| 10 | +# Usage: |
| 11 | +# for Qwen3-Reranker |
| 12 | +# python converting.py --model_name Qwen/Qwen3-Reranker-0.6B --classifier_from_tokens '["no", "yes"]' --method from_2_way_softmax --path ./Qwen3-Reranker-0.6B-seq-cls |
| 13 | +# for BAAI/bge-reranker-v2-gemma |
| 14 | +# python converting.py --model_name BAAI/bge-reranker-v2-gemma --classifier_from_tokens '["yes"]' --method no_post_processing --path ./bge-reranker-v2-gemma-seq-cls |
| 15 | + |
| 16 | + |
| 17 | +def from_2_way_softmax( |
| 18 | + causal_lm, seq_cls_model, tokenizer, classifier_from_tokens, device |
| 19 | +): |
| 20 | + # for Qwen3-Reranker |
| 21 | + # Adapted from https://huggingface.co/Qwen/Qwen3-Reranker-0.6B/discussions/3 |
| 22 | + assert len(classifier_from_tokens) == 2 |
| 23 | + |
| 24 | + lm_head_weights = causal_lm.lm_head.weight |
| 25 | + |
| 26 | + a = tokenizer.convert_tokens_to_ids(classifier_from_tokens[0]) |
| 27 | + b = tokenizer.convert_tokens_to_ids(classifier_from_tokens[1]) |
| 28 | + |
| 29 | + score_weight = lm_head_weights[b].to(torch.float32).to(device).to( |
| 30 | + torch.float32 |
| 31 | + ) - lm_head_weights[a].to(device) |
| 32 | + |
| 33 | + with torch.no_grad(): |
| 34 | + seq_cls_model.score.weight.copy_(score_weight.unsqueeze(0)) |
| 35 | + if seq_cls_model.score.bias is not None: |
| 36 | + seq_cls_model.score.bias.zero_() |
| 37 | + |
| 38 | + |
| 39 | +def no_post_processing( |
| 40 | + causal_lm, seq_cls_model, tokenizer, classifier_from_tokens, device |
| 41 | +): |
| 42 | + # for BAAI/bge-reranker-v2-gemma |
| 43 | + |
| 44 | + lm_head_weights = causal_lm.lm_head.weight |
| 45 | + tokens = [tokenizer.convert_tokens_to_ids(t) for t in classifier_from_tokens] |
| 46 | + score_weight = lm_head_weights[tokens].to(device) |
| 47 | + |
| 48 | + with torch.no_grad(): |
| 49 | + seq_cls_model.score.weight.copy_(score_weight) |
| 50 | + if seq_cls_model.score.bias is not None: |
| 51 | + seq_cls_model.score.bias.zero_() |
| 52 | + |
| 53 | + |
| 54 | +method_map = { |
| 55 | + function.__name__: function for function in [from_2_way_softmax, no_post_processing] |
| 56 | +} |
| 57 | + |
| 58 | + |
| 59 | +def converting(model_name, classifier_from_tokens, path, method, device="cpu"): |
| 60 | + assert method in method_map |
| 61 | + |
| 62 | + tokenizer = transformers.AutoTokenizer.from_pretrained(model_name) |
| 63 | + causal_lm = transformers.AutoModelForCausalLM.from_pretrained( |
| 64 | + model_name, device_map=device |
| 65 | + ) |
| 66 | + |
| 67 | + seq_cls_model = transformers.AutoModelForSequenceClassification.from_pretrained( |
| 68 | + model_name, num_labels=1, ignore_mismatched_sizes=True, device_map=device |
| 69 | + ) |
| 70 | + |
| 71 | + method_map[method]( |
| 72 | + causal_lm, seq_cls_model, tokenizer, classifier_from_tokens, device |
| 73 | + ) |
| 74 | + |
| 75 | + seq_cls_model.config.pad_token_id = tokenizer.pad_token_id |
| 76 | + |
| 77 | + seq_cls_model.save_pretrained(path) |
| 78 | + tokenizer.save_pretrained(path) |
| 79 | + |
| 80 | + |
| 81 | +def parse_args(): |
| 82 | + parser = argparse.ArgumentParser( |
| 83 | + description="Converting *ForCausalLM models to " |
| 84 | + "*ForSequenceClassification models." |
| 85 | + ) |
| 86 | + parser.add_argument( |
| 87 | + "--model_name", type=str, default="Qwen/Qwen3-Reranker-0.6B", help="Model name" |
| 88 | + ) |
| 89 | + parser.add_argument( |
| 90 | + "--classifier_from_tokens", |
| 91 | + type=str, |
| 92 | + default='["no", "yes"]', |
| 93 | + help="classifier from tokens", |
| 94 | + ) |
| 95 | + parser.add_argument( |
| 96 | + "--method", type=str, default="from_2_way_softmax", help="Converting converting" |
| 97 | + ) |
| 98 | + parser.add_argument( |
| 99 | + "--path", |
| 100 | + type=str, |
| 101 | + default="./converted_model", |
| 102 | + help="Path to save converted model", |
| 103 | + ) |
| 104 | + return parser.parse_args() |
| 105 | + |
| 106 | + |
| 107 | +if __name__ == "__main__": |
| 108 | + args = parse_args() |
| 109 | + |
| 110 | + converting( |
| 111 | + model_name=args.model_name, |
| 112 | + classifier_from_tokens=json.loads(args.classifier_from_tokens), |
| 113 | + method=args.method, |
| 114 | + path=args.path, |
| 115 | + ) |
0 commit comments