Skip to content

[Bug]: v0.9.1 offline data parallel failed: AssertionError, assert coord_socket is not None #20013

Closed
@NaNAGISaSA

Description

@NaNAGISaSA

Your current environment

The output of python collect_env.py
INFO 06-24 09:18:17 [__init__.py:244] Automatically detected platform cuda.
Collecting environment information...
==============================
        System Info
==============================
OS                           : Ubuntu 24.04.2 LTS (x86_64)
GCC version                  : (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
Clang version                : Could not collect
CMake version                : version 3.31.6
Libc version                 : glibc-2.39

==============================
       PyTorch Info
==============================
PyTorch version              : 2.7.0+cu126
Is debug build               : False
CUDA used to build PyTorch   : 12.6
ROCM used to build PyTorch   : N/A

==============================
      Python Environment
==============================
Python version               : 3.12.3 (main, Feb  4 2025, 14:48:35) [GCC 13.3.0] (64-bit runtime)
Python platform              : Linux-5.15.0-139-generic-x86_64-with-glibc2.39

==============================
       CUDA / GPU Info
==============================
Is CUDA available            : True
CUDA runtime version         : 12.9.41
CUDA_MODULE_LOADING set to   : LAZY
GPU models and configuration : 
GPU 0: NVIDIA A100-PCIE-40GB
GPU 1: NVIDIA A100-PCIE-40GB
GPU 2: NVIDIA A100-PCIE-40GB
GPU 3: NVIDIA A100-PCIE-40GB

Nvidia driver version        : 535.183.06
cuDNN version                : Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.10.1
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.10.1
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.10.1
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.10.1
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.10.1
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.10.1
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.10.1
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.10.1
HIP runtime version          : N/A
MIOpen runtime version       : N/A
Is XNNPACK available         : True

==============================
          CPU Info
==============================
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        43 bits physical, 48 bits virtual
Byte Order:                           Little Endian
CPU(s):                               128
On-line CPU(s) list:                  0-127
Vendor ID:                            AuthenticAMD
Model name:                           AMD EPYC 7742 64-Core Processor
CPU family:                           23
Model:                                49
Thread(s) per core:                   1
Core(s) per socket:                   64
Socket(s):                            2
Stepping:                             0
Frequency boost:                      enabled
CPU(s) scaling MHz:                   88%
CPU max MHz:                          2250.0000
CPU min MHz:                          1500.0000
BogoMIPS:                             4499.62
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sme sev sev_es
Virtualization:                       AMD-V
L1d cache:                            4 MiB (128 instances)
L1i cache:                            4 MiB (128 instances)
L2 cache:                             64 MiB (128 instances)
L3 cache:                             512 MiB (32 instances)
NUMA node(s):                         8
NUMA node0 CPU(s):                    0-15
NUMA node1 CPU(s):                    16-31
NUMA node2 CPU(s):                    32-47
NUMA node3 CPU(s):                    48-63
NUMA node4 CPU(s):                    64-79
NUMA node5 CPU(s):                    80-95
NUMA node6 CPU(s):                    96-111
NUMA node7 CPU(s):                    112-127
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Mitigation; untrained return thunk; SMT disabled
Vulnerability Spec rstack overflow:   Mitigation; SMT disabled
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Retpolines; IBPB conditional; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected

==============================
Versions of relevant libraries
==============================
[pip3] mypy_extensions==1.1.0
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.5.1.17
[pip3] nvidia-cudnn-frontend==1.11.0
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-cufile-cu12==1.11.1.6
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-dali-cuda120==1.49.0
[pip3] nvidia-ml-py==12.570.86
[pip3] nvidia-modelopt==0.27.1
[pip3] nvidia-modelopt-core==0.27.1
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvcomp-cu12==4.2.0.14
[pip3] nvidia-nvimgcodec-cu12==0.5.0.13
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvjpeg-cu12==12.4.0.16
[pip3] nvidia-nvjpeg2k-cu12==0.8.1.40
[pip3] nvidia-nvtiff-cu12==0.5.0.67
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] nvidia-resiliency-ext==0.3.0
[pip3] onnx==1.17.0
[pip3] optree==0.15.0
[pip3] pynvml==12.0.0
[pip3] pytorch-triton==3.3.0+git96316ce52.nvinternal
[pip3] pyzmq==26.4.0
[pip3] torch==2.7.0
[pip3] torch_tensorrt==2.8.0a0
[pip3] torchaudio==2.7.0
[pip3] torchprofile==0.0.4
[pip3] torchvision==0.22.0
[pip3] transformers==4.52.4
[pip3] triton==3.3.0
[conda] Could not collect

==============================
         vLLM Info
==============================
ROCM Version                 : Could not collect
Neuron SDK Version           : N/A
vLLM Version                 : 0.9.1
vLLM Build Flags:
  CUDA Archs: 7.5 8.0 8.6 9.0 10.0 12.0+PTX; ROCm: Disabled; Neuron: Disabled
GPU Topology:
  	GPU0	GPU1	GPU2	GPU3	CPU Affinity	NUMA Affinity	GPU NUMA ID
GPU0	 X 	SYS	SYS	SYS	48-63	3		N/A
GPU1	SYS	 X 	SYS	SYS	32-47	2		N/A
GPU2	SYS	SYS	 X 	SYS	16-31	1		N/A
GPU3	SYS	SYS	SYS	 X 	64-79	4		N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

==============================
     Environment Variables
==============================
NVIDIA_VISIBLE_DEVICES=void
CUBLAS_VERSION=12.9.0.13
NVIDIA_REQUIRE_CUDA=cuda>=9.0
TORCH_CUDA_ARCH_LIST=7.5 8.0 8.6 9.0 10.0 12.0+PTX
NCCL_VERSION=2.26.5
NVIDIA_DRIVER_CAPABILITIES=compute,utility,video
TORCH_NCCL_USE_COMM_NONBLOCKING=0
CUDA_ARCH_LIST=7.5 8.0 8.6 9.0 10.0 12.0
NVIDIA_PRODUCT_NAME=PyTorch
CUDA_VERSION=12.9.0.043
PYTORCH_VERSION=2.8.0a0+5228986
PYTORCH_BUILD_NUMBER=0
CUBLASMP_VERSION=0.4.0.789
CUDNN_FRONTEND_VERSION=1.11.0
CUDNN_VERSION=9.10.1.4
PYTORCH_HOME=/opt/pytorch/pytorch
LD_LIBRARY_PATH=/usr/local/lib/python3.12/dist-packages/torch/lib:/usr/local/lib/python3.12/dist-packages/torch_tensorrt/lib:/usr/local/cuda/compat/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
NVIDIA_BUILD_ID=170559088
CUDA_DRIVER_VERSION=575.51.03
PYTORCH_BUILD_VERSION=2.8.0a0+5228986
CUDA_HOME=/usr/local/cuda
CUDA_HOME=/usr/local/cuda
CUDA_MODULE_LOADING=LAZY
NVIDIA_REQUIRE_JETPACK_HOST_MOUNTS=
NVIDIA_PYTORCH_VERSION=25.05
TORCH_ALLOW_TF32_CUBLAS_OVERRIDE=1
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1

🐛 Describe the bug

  • How to produce

Run llama with data_parallel.py in examples and disable expert parallel, change enable_expert_parallel=True to enable_expert_parallel=False is just ok to produce the error.

enable_expert_parallel=True,

I run data_parallel.py with the following cmd:

python data_parallel.py --model=/Path/to/Llama-3.2-1B-Instruct --dp-size=2 --tp-size=2 --enforce-eager

Then it will raise an AssertionError after all dp group finish work.

  • Error logs
Adding requests: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 200/200 [00:00<00:00, 4616.00it/s]
Adding requests: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 200/200 [00:00<00:00, 4672.36it/s]
Processed prompts: 100%|██████████████████████████████████████████████████████████████████████████████████████| 200/200 [00:00<00:00, 467.61it/s, est. speed input: 3039.73 toks/s, output: 7482.31 toks/s]
DP rank 0, Prompt: 'Hello, my name is', Generated text: " Emily and I'm a huge fan of your YouTube channel! Your content is so"
DP rank 0, Prompt: 'The president of the United States is', Generated text: ' the head of state and government. This is the most obvious job in the United'
DP rank 0, Prompt: 'The capital of France is', Generated text: " Paris. That's all you need to know.\n\nThis response is a simple example"
DP rank 0, Prompt: 'The future of AI is', Generated text: ' being shaped by many factors, including advancements in computing power, increased data availability,'
DP rank 0, Prompt: 'Hello, my name is', Generated text: ' Ish, and I am a big fan of your work. I have been following'
Processed prompts: 100%|██████████████████████████████████████████████████████████████████████████████████████| 200/200 [00:00<00:00, 356.21it/s, est. speed input: 2315.58 toks/s, output: 7117.69 toks/s]
DP rank 1, Prompt: 'Hello, my name is', Generated text: " Emily and I'm a huge fan of your YouTube channel! Your content is so engaging, informative,"
DP rank 1, Prompt: 'The president of the United States is', Generated text: ' the head of state and government. This is the most obvious job in the United States. The President'
DP rank 1, Prompt: 'The capital of France is', Generated text: " Paris. That's all you need to know.\n\nThis response is a simple example of a prompt that"
DP rank 1, Prompt: 'The future of AI is', Generated text: ' being shaped by many factors, including advancements in computing power, increased data availability, and advancements in machine'
DP rank 1, Prompt: 'Hello, my name is', Generated text: ' Ish, and I am a big fan of your work. I have been following your blog for a'
(EngineCore_0 pid=7862) Exception in thread Thread-2 (process_output_sockets):
(EngineCore_0 pid=7862) Traceback (most recent call last):
(EngineCore_0 pid=7862)   File "/usr/lib/python3.12/threading.py", line 1073, in _bootstrap_inner
(EngineCore_0 pid=7862)     self.run()
(EngineCore_0 pid=7862)   File "/usr/lib/python3.12/threading.py", line 1010, in run
(EngineCore_0 pid=7862)     self._target(*self._args, **self._kwargs)
(EngineCore_0 pid=7862)   File "/usr/local/lib/python3.12/dist-packages/vllm/v1/engine/core.py", line 720, in process_output_sockets
(EngineCore_0 pid=7862)     assert coord_socket is not None
(EngineCore_0 pid=7862)            ^^^^^^^^^^^^^^^^^^^^^^^^
(EngineCore_0 pid=7862) AssertionError
  • Full error logs
Full error logs

INFO 06-24 09:23:54 [init.py:244] Automatically detected platform cuda.
DP rank 0 needs to process 200 prompts
DP rank 1 needs to process 200 prompts
INFO 06-24 09:24:05 [config.py:823] This model supports multiple tasks: {'embed', 'generate', 'reward', 'classify', 'score'}. Defaulting to 'generate'.
INFO 06-24 09:24:05 [config.py:823] This model supports multiple tasks: {'embed', 'generate', 'reward', 'classify', 'score'}. Defaulting to 'generate'.
INFO 06-24 09:24:05 [config.py:1946] Defaulting to use mp for distributed inference
INFO 06-24 09:24:05 [config.py:2195] Chunked prefill is enabled with max_num_batched_tokens=8192.
WARNING 06-24 09:24:05 [cuda.py:91] To see benefits of async output processing, enable CUDA graph. Since, enforce-eager is enabled, async output processor cannot be used
INFO 06-24 09:24:05 [config.py:1946] Defaulting to use mp for distributed inference
INFO 06-24 09:24:05 [config.py:2195] Chunked prefill is enabled with max_num_batched_tokens=8192.
WARNING 06-24 09:24:05 [cuda.py:91] To see benefits of async output processing, enable CUDA graph. Since, enforce-eager is enabled, async output processor cannot be used
(EngineCore_1 pid=7854) INFO 06-24 09:24:06 [core.py:455] Waiting for init message from front-end.
(EngineCore_0 pid=7862) INFO 06-24 09:24:06 [core.py:455] Waiting for init message from front-end.
(EngineCore_1 pid=7854) INFO 06-24 09:24:07 [core.py:70] Initializing a V1 LLM engine (v0.9.1) with config: model='/data/vllm/models/LLM-Research/Llama-3.2-1B-Instruct', speculative_config=None, tokenizer='/data/vllm/models/LLM-Research/Llama-3.2-1B-Instruct', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config={}, tokenizer_revision=None, trust_remote_code=False, dtype=torch.bfloat16, max_seq_len=131072, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=2, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=True, kv_cache_dtype=auto, device_config=cuda, decoding_config=DecodingConfig(backend='auto', disable_fallback=False, disable_any_whitespace=False, disable_additional_properties=False, reasoning_backend=''), observability_config=ObservabilityConfig(show_hidden_metrics_for_version=None, otlp_traces_endpoint=None, collect_detailed_traces=None), seed=0, served_model_name=/data/vllm/models/LLM-Research/Llama-3.2-1B-Instruct, num_scheduler_steps=1, multi_step_stream_outputs=True, enable_prefix_caching=True, chunked_prefill_enabled=True, use_async_output_proc=False, pooler_config=None, compilation_config={"level":0,"debug_dump_path":"","cache_dir":"","backend":"","custom_ops":[],"splitting_ops":[],"use_inductor":true,"compile_sizes":[],"inductor_compile_config":{"enable_auto_functionalized_v2":false},"inductor_passes":{},"use_cudagraph":true,"cudagraph_num_of_warmups":0,"cudagraph_capture_sizes":[],"cudagraph_copy_inputs":false,"full_cuda_graph":false,"max_capture_size":0,"local_cache_dir":null}
(EngineCore_1 pid=7854) WARNING 06-24 09:24:07 [multiproc_worker_utils.py:307] Reducing Torch parallelism from 128 threads to 1 to avoid unnecessary CPU contention. Set OMP_NUM_THREADS in the external environment to tune this value as needed.
(EngineCore_1 pid=7854) INFO 06-24 09:24:07 [shm_broadcast.py:289] vLLM message queue communication handle: Handle(local_reader_ranks=[0, 1], buffer_handle=(2, 16777216, 10, 'psm_f783857c'), local_subscribe_addr='ipc:///tmp/63e3ad62-63a3-4aa4-bd9c-22cbec42672d', remote_subscribe_addr=None, remote_addr_ipv6=False)
(EngineCore_0 pid=7862) INFO 06-24 09:24:07 [core.py:70] Initializing a V1 LLM engine (v0.9.1) with config: model='/data/vllm/models/LLM-Research/Llama-3.2-1B-Instruct', speculative_config=None, tokenizer='/data/vllm/models/LLM-Research/Llama-3.2-1B-Instruct', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config={}, tokenizer_revision=None, trust_remote_code=False, dtype=torch.bfloat16, max_seq_len=131072, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=2, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=True, kv_cache_dtype=auto, device_config=cuda, decoding_config=DecodingConfig(backend='auto', disable_fallback=False, disable_any_whitespace=False, disable_additional_properties=False, reasoning_backend=''), observability_config=ObservabilityConfig(show_hidden_metrics_for_version=None, otlp_traces_endpoint=None, collect_detailed_traces=None), seed=0, served_model_name=/data/vllm/models/LLM-Research/Llama-3.2-1B-Instruct, num_scheduler_steps=1, multi_step_stream_outputs=True, enable_prefix_caching=True, chunked_prefill_enabled=True, use_async_output_proc=False, pooler_config=None, compilation_config={"level":0,"debug_dump_path":"","cache_dir":"","backend":"","custom_ops":[],"splitting_ops":[],"use_inductor":true,"compile_sizes":[],"inductor_compile_config":{"enable_auto_functionalized_v2":false},"inductor_passes":{},"use_cudagraph":true,"cudagraph_num_of_warmups":0,"cudagraph_capture_sizes":[],"cudagraph_copy_inputs":false,"full_cuda_graph":false,"max_capture_size":0,"local_cache_dir":null}
(EngineCore_0 pid=7862) WARNING 06-24 09:24:07 [multiproc_worker_utils.py:307] Reducing Torch parallelism from 128 threads to 1 to avoid unnecessary CPU contention. Set OMP_NUM_THREADS in the external environment to tune this value as needed.
(EngineCore_0 pid=7862) INFO 06-24 09:24:07 [shm_broadcast.py:289] vLLM message queue communication handle: Handle(local_reader_ranks=[0, 1], buffer_handle=(2, 16777216, 10, 'psm_9954119f'), local_subscribe_addr='ipc:///tmp/e42dd325-4ed8-42a1-ab4d-ffc51b185728', remote_subscribe_addr=None, remote_addr_ipv6=False)
(EngineCore_1 pid=7854) WARNING 06-24 09:24:07 [utils.py:2737] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,initialize_cache not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0x7eff3edf3dd0>
(EngineCore_1 pid=7854) WARNING 06-24 09:24:07 [utils.py:2737] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,initialize_cache not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0x7eff3edf36e0>
(EngineCore_1 pid=7854) (VllmWorker rank=0 pid=7878) INFO 06-24 09:24:07 [shm_broadcast.py:289] vLLM message queue communication handle: Handle(local_reader_ranks=[0], buffer_handle=(1, 10485760, 10, 'psm_6b9caf2f'), local_subscribe_addr='ipc:///tmp/3f2329ac-5d8c-4e40-a644-e98126f91b8a', remote_subscribe_addr=None, remote_addr_ipv6=False)
(EngineCore_1 pid=7854) (VllmWorker rank=1 pid=7880) INFO 06-24 09:24:07 [shm_broadcast.py:289] vLLM message queue communication handle: Handle(local_reader_ranks=[0], buffer_handle=(1, 10485760, 10, 'psm_1dec3a75'), local_subscribe_addr='ipc:///tmp/ef6d1180-dd03-47e1-98af-6eab4f3312ed', remote_subscribe_addr=None, remote_addr_ipv6=False)
(EngineCore_0 pid=7862) WARNING 06-24 09:24:07 [utils.py:2737] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,initialize_cache not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0x7eff3ebff500>
(EngineCore_0 pid=7862) WARNING 06-24 09:24:07 [utils.py:2737] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,initialize_cache not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0x7eff3abdf3b0>
(EngineCore_0 pid=7862) (VllmWorker rank=1 pid=7881) INFO 06-24 09:24:07 [shm_broadcast.py:289] vLLM message queue communication handle: Handle(local_reader_ranks=[0], buffer_handle=(1, 10485760, 10, 'psm_01e3c3d4'), local_subscribe_addr='ipc:///tmp/37ab59c0-a0b3-4f00-a4ab-7384db8af311', remote_subscribe_addr=None, remote_addr_ipv6=False)
(EngineCore_0 pid=7862) (VllmWorker rank=0 pid=7879) INFO 06-24 09:24:07 [shm_broadcast.py:289] vLLM message queue communication handle: Handle(local_reader_ranks=[0], buffer_handle=(1, 10485760, 10, 'psm_298dcf90'), local_subscribe_addr='ipc:///tmp/0ef16bf1-6694-4523-8ef8-a8762d833559', remote_subscribe_addr=None, remote_addr_ipv6=False)
(EngineCore_0 pid=7862) (VllmWorker rank=1 pid=7881) INFO 06-24 09:24:09 [parallel_state.py:934] Adjusting world_size=4 rank=1 distributed_init_method=tcp://127.0.0.1:49774 for DP
(EngineCore_1 pid=7854) (VllmWorker rank=1 pid=7880) INFO 06-24 09:24:09 [parallel_state.py:934] Adjusting world_size=4 rank=3 distributed_init_method=tcp://127.0.0.1:49774 for DP
(EngineCore_1 pid=7854) (VllmWorker rank=0 pid=7878) INFO 06-24 09:24:09 [parallel_state.py:934] Adjusting world_size=4 rank=2 distributed_init_method=tcp://127.0.0.1:49774 for DP
(EngineCore_0 pid=7862) (VllmWorker rank=0 pid=7879) INFO 06-24 09:24:09 [parallel_state.py:934] Adjusting world_size=4 rank=0 distributed_init_method=tcp://127.0.0.1:49774 for DP
(EngineCore_0 pid=7862) (VllmWorker rank=1 pid=7881) INFO 06-24 09:24:09 [utils.py:1126] Found nccl from library libnccl.so.2
(EngineCore_1 pid=7854) (VllmWorker rank=1 pid=7880) INFO 06-24 09:24:09 [utils.py:1126] Found nccl from library libnccl.so.2
(EngineCore_0 pid=7862) (VllmWorker rank=1 pid=7881) INFO 06-24 09:24:09 [pynccl.py:70] vLLM is using nccl==2.26.2
(EngineCore_1 pid=7854) (VllmWorker rank=1 pid=7880) INFO 06-24 09:24:09 [pynccl.py:70] vLLM is using nccl==2.26.2
(EngineCore_1 pid=7854) (VllmWorker rank=0 pid=7878) INFO 06-24 09:24:09 [utils.py:1126] Found nccl from library libnccl.so.2
(EngineCore_1 pid=7854) (VllmWorker rank=0 pid=7878) INFO 06-24 09:24:09 [pynccl.py:70] vLLM is using nccl==2.26.2
(EngineCore_0 pid=7862) (VllmWorker rank=0 pid=7879) INFO 06-24 09:24:09 [utils.py:1126] Found nccl from library libnccl.so.2
(EngineCore_0 pid=7862) (VllmWorker rank=0 pid=7879) INFO 06-24 09:24:09 [pynccl.py:70] vLLM is using nccl==2.26.2
(EngineCore_1 pid=7854) (VllmWorker rank=1 pid=7880) INFO 06-24 09:24:10 [custom_all_reduce_utils.py:246] reading GPU P2P access cache from /root/.cache/vllm/gpu_p2p_access_cache_for_2,3.json
(EngineCore_0 pid=7862) (VllmWorker rank=0 pid=7879) INFO 06-24 09:24:10 [custom_all_reduce_utils.py:246] reading GPU P2P access cache from /root/.cache/vllm/gpu_p2p_access_cache_for_0,1.json
(EngineCore_1 pid=7854) (VllmWorker rank=0 pid=7878) INFO 06-24 09:24:10 [custom_all_reduce_utils.py:246] reading GPU P2P access cache from /root/.cache/vllm/gpu_p2p_access_cache_for_2,3.json
(EngineCore_0 pid=7862) (VllmWorker rank=1 pid=7881) INFO 06-24 09:24:10 [custom_all_reduce_utils.py:246] reading GPU P2P access cache from /root/.cache/vllm/gpu_p2p_access_cache_for_0,1.json
(EngineCore_0 pid=7862) (VllmWorker rank=0 pid=7879) INFO 06-24 09:24:10 [shm_broadcast.py:289] vLLM message queue communication handle: Handle(local_reader_ranks=[1], buffer_handle=(1, 4194304, 6, 'psm_50a881da'), local_subscribe_addr='ipc:///tmp/690de017-7700-4b3e-b959-178a48ba1bc5', remote_subscribe_addr=None, remote_addr_ipv6=False)
(EngineCore_1 pid=7854) (VllmWorker rank=0 pid=7878) INFO 06-24 09:24:10 [shm_broadcast.py:289] vLLM message queue communication handle: Handle(local_reader_ranks=[1], buffer_handle=(1, 4194304, 6, 'psm_c3ae5421'), local_subscribe_addr='ipc:///tmp/86d2bc1b-dc9c-49e4-8133-4d37190e6017', remote_subscribe_addr=None, remote_addr_ipv6=False)
(EngineCore_1 pid=7854) (VllmWorker rank=1 pid=7880) INFO 06-24 09:24:10 [utils.py:1126] Found nccl from library libnccl.so.2
(EngineCore_1 pid=7854) (VllmWorker rank=1 pid=7880) INFO 06-24 09:24:10 [pynccl.py:70] vLLM is using nccl==2.26.2
(EngineCore_0 pid=7862) (VllmWorker rank=0 pid=7879) INFO 06-24 09:24:10 [utils.py:1126] Found nccl from library libnccl.so.2
(EngineCore_0 pid=7862) (VllmWorker rank=0 pid=7879) INFO 06-24 09:24:10 [pynccl.py:70] vLLM is using nccl==2.26.2
(EngineCore_0 pid=7862) (VllmWorker rank=1 pid=7881) INFO 06-24 09:24:10 [utils.py:1126] Found nccl from library libnccl.so.2
(EngineCore_0 pid=7862) (VllmWorker rank=1 pid=7881) INFO 06-24 09:24:10 [pynccl.py:70] vLLM is using nccl==2.26.2
(EngineCore_1 pid=7854) (VllmWorker rank=0 pid=7878) INFO 06-24 09:24:10 [utils.py:1126] Found nccl from library libnccl.so.2
(EngineCore_1 pid=7854) (VllmWorker rank=0 pid=7878) INFO 06-24 09:24:10 [pynccl.py:70] vLLM is using nccl==2.26.2
(EngineCore_0 pid=7862) (VllmWorker rank=1 pid=7881) INFO 06-24 09:24:10 [cuda_communicator.py:65] Using naive all2all manager.
(EngineCore_1 pid=7854) (VllmWorker rank=0 pid=7878) INFO 06-24 09:24:10 [cuda_communicator.py:65] Using naive all2all manager.
(EngineCore_1 pid=7854) (VllmWorker rank=1 pid=7880) INFO 06-24 09:24:10 [cuda_communicator.py:65] Using naive all2all manager.
(EngineCore_0 pid=7862) (VllmWorker rank=0 pid=7879) INFO 06-24 09:24:10 [cuda_communicator.py:65] Using naive all2all manager.
(EngineCore_1 pid=7854) (VllmWorker rank=0 pid=7878) INFO 06-24 09:24:10 [parallel_state.py:1065] rank 2 in world size 4 is assigned as DP rank 1, PP rank 0, TP rank 0, EP rank 2
(EngineCore_0 pid=7862) (VllmWorker rank=1 pid=7881) INFO 06-24 09:24:10 [parallel_state.py:1065] rank 1 in world size 4 is assigned as DP rank 0, PP rank 0, TP rank 1, EP rank 1
(EngineCore_1 pid=7854) (VllmWorker rank=1 pid=7880) INFO 06-24 09:24:10 [parallel_state.py:1065] rank 3 in world size 4 is assigned as DP rank 1, PP rank 0, TP rank 1, EP rank 3
(EngineCore_0 pid=7862) (VllmWorker rank=0 pid=7879) INFO 06-24 09:24:10 [parallel_state.py:1065] rank 0 in world size 4 is assigned as DP rank 0, PP rank 0, TP rank 0, EP rank 0
(EngineCore_1 pid=7854) (VllmWorker rank=0 pid=7878) WARNING 06-24 09:24:10 [topk_topp_sampler.py:59] FlashInfer is not available. Falling back to the PyTorch-native implementation of top-p & top-k sampling. For the best performance, please install FlashInfer.
(EngineCore_0 pid=7862) (VllmWorker rank=1 pid=7881) WARNING 06-24 09:24:10 [topk_topp_sampler.py:59] FlashInfer is not available. Falling back to the PyTorch-native implementation of top-p & top-k sampling. For the best performance, please install FlashInfer.
(EngineCore_1 pid=7854) (VllmWorker rank=1 pid=7880) WARNING 06-24 09:24:10 [topk_topp_sampler.py:59] FlashInfer is not available. Falling back to the PyTorch-native implementation of top-p & top-k sampling. For the best performance, please install FlashInfer.
(EngineCore_0 pid=7862) (VllmWorker rank=0 pid=7879) WARNING 06-24 09:24:10 [topk_topp_sampler.py:59] FlashInfer is not available. Falling back to the PyTorch-native implementation of top-p & top-k sampling. For the best performance, please install FlashInfer.
(EngineCore_0 pid=7862) (VllmWorker rank=0 pid=7879) INFO 06-24 09:24:10 [gpu_model_runner.py:1595] Starting to load model /data/vllm/models/LLM-Research/Llama-3.2-1B-Instruct...
(EngineCore_0 pid=7862) (VllmWorker rank=1 pid=7881) INFO 06-24 09:24:10 [gpu_model_runner.py:1595] Starting to load model /data/vllm/models/LLM-Research/Llama-3.2-1B-Instruct...
(EngineCore_1 pid=7854) (VllmWorker rank=1 pid=7880) INFO 06-24 09:24:10 [gpu_model_runner.py:1595] Starting to load model /data/vllm/models/LLM-Research/Llama-3.2-1B-Instruct...
(EngineCore_1 pid=7854) (VllmWorker rank=0 pid=7878) INFO 06-24 09:24:10 [gpu_model_runner.py:1595] Starting to load model /data/vllm/models/LLM-Research/Llama-3.2-1B-Instruct...
(EngineCore_0 pid=7862) (VllmWorker rank=0 pid=7879) INFO 06-24 09:24:10 [gpu_model_runner.py:1600] Loading model from scratch...
(EngineCore_0 pid=7862) (VllmWorker rank=0 pid=7879) INFO 06-24 09:24:10 [cuda.py:252] Using Flash Attention backend on V1 engine.
Loading safetensors checkpoint shards: 0% Completed | 0/1 [00:00<?, ?it/s]
(EngineCore_0 pid=7862) (VllmWorker rank=1 pid=7881) INFO 06-24 09:24:10 [gpu_model_runner.py:1600] Loading model from scratch...
(EngineCore_1 pid=7854) (VllmWorker rank=1 pid=7880) INFO 06-24 09:24:10 [gpu_model_runner.py:1600] Loading model from scratch...
(EngineCore_1 pid=7854) (VllmWorker rank=0 pid=7878) INFO 06-24 09:24:10 [gpu_model_runner.py:1600] Loading model from scratch...
(EngineCore_0 pid=7862) (VllmWorker rank=1 pid=7881) INFO 06-24 09:24:10 [cuda.py:252] Using Flash Attention backend on V1 engine.
(EngineCore_1 pid=7854) (VllmWorker rank=1 pid=7880) INFO 06-24 09:24:10 [cuda.py:252] Using Flash Attention backend on V1 engine.
(EngineCore_1 pid=7854) (VllmWorker rank=0 pid=7878) INFO 06-24 09:24:10 [cuda.py:252] Using Flash Attention backend on V1 engine.
Loading safetensors checkpoint shards: 100% Completed | 1/1 [00:00<00:00, 3.41it/s]
Loading safetensors checkpoint shards: 100% Completed | 1/1 [00:00<00:00, 3.40it/s]
(EngineCore_0 pid=7862) (VllmWorker rank=0 pid=7879)
(EngineCore_0 pid=7862) (VllmWorker rank=0 pid=7879) INFO 06-24 09:24:11 [default_loader.py:272] Loading weights took 0.34 seconds
(EngineCore_1 pid=7854) (VllmWorker rank=1 pid=7880) INFO 06-24 09:24:11 [default_loader.py:272] Loading weights took 0.33 seconds
(EngineCore_0 pid=7862) (VllmWorker rank=1 pid=7881) INFO 06-24 09:24:11 [default_loader.py:272] Loading weights took 0.38 seconds
(EngineCore_1 pid=7854) (VllmWorker rank=0 pid=7878) INFO 06-24 09:24:11 [default_loader.py:272] Loading weights took 0.37 seconds
(EngineCore_0 pid=7862) (VllmWorker rank=0 pid=7879) INFO 06-24 09:24:11 [gpu_model_runner.py:1624] Model loading took 1.1667 GiB and 0.463341 seconds
(EngineCore_1 pid=7854) (VllmWorker rank=1 pid=7880) INFO 06-24 09:24:11 [gpu_model_runner.py:1624] Model loading took 1.1667 GiB and 0.465979 seconds
(EngineCore_0 pid=7862) (VllmWorker rank=1 pid=7881) INFO 06-24 09:24:11 [gpu_model_runner.py:1624] Model loading took 1.1667 GiB and 0.507217 seconds
(EngineCore_1 pid=7854) (VllmWorker rank=0 pid=7878) INFO 06-24 09:24:11 [gpu_model_runner.py:1624] Model loading took 1.1667 GiB and 0.508762 seconds
(EngineCore_0 pid=7862) (VllmWorker rank=0 pid=7879) INFO 06-24 09:24:13 [gpu_worker.py:227] Available KV cache memory: 32.97 GiB
(EngineCore_1 pid=7854) (VllmWorker rank=0 pid=7878) INFO 06-24 09:24:13 [gpu_worker.py:227] Available KV cache memory: 32.97 GiB
(EngineCore_0 pid=7862) (VllmWorker rank=1 pid=7881) INFO 06-24 09:24:13 [gpu_worker.py:227] Available KV cache memory: 32.97 GiB
(EngineCore_1 pid=7854) (VllmWorker rank=1 pid=7880) INFO 06-24 09:24:13 [gpu_worker.py:227] Available KV cache memory: 32.97 GiB
(EngineCore_0 pid=7862) INFO 06-24 09:24:13 [kv_cache_utils.py:715] GPU KV cache size: 2,160,416 tokens
(EngineCore_0 pid=7862) INFO 06-24 09:24:13 [kv_cache_utils.py:719] Maximum concurrency for 131,072 tokens per request: 16.48x
(EngineCore_0 pid=7862) INFO 06-24 09:24:13 [kv_cache_utils.py:715] GPU KV cache size: 2,160,416 tokens
(EngineCore_0 pid=7862) INFO 06-24 09:24:13 [kv_cache_utils.py:719] Maximum concurrency for 131,072 tokens per request: 16.48x
(EngineCore_1 pid=7854) INFO 06-24 09:24:13 [kv_cache_utils.py:715] GPU KV cache size: 2,160,416 tokens
(EngineCore_1 pid=7854) INFO 06-24 09:24:13 [kv_cache_utils.py:719] Maximum concurrency for 131,072 tokens per request: 16.48x
(EngineCore_1 pid=7854) INFO 06-24 09:24:13 [kv_cache_utils.py:715] GPU KV cache size: 2,160,416 tokens
(EngineCore_1 pid=7854) INFO 06-24 09:24:13 [kv_cache_utils.py:719] Maximum concurrency for 131,072 tokens per request: 16.48x
(EngineCore_0 pid=7862) INFO 06-24 09:24:14 [core.py:171] init engine (profile, create kv cache, warmup model) took 2.26 seconds
(EngineCore_1 pid=7854) INFO 06-24 09:24:14 [core.py:171] init engine (profile, create kv cache, warmup model) took 2.19 seconds
Adding requests: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 200/200 [00:00<00:00, 4616.00it/s]
Adding requests: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 200/200 [00:00<00:00, 4672.36it/s]
Processed prompts: 100%|██████████████████████████████████████████████████████████████████████████████████████| 200/200 [00:00<00:00, 467.61it/s, est. speed input: 3039.73 toks/s, output: 7482.31 toks/s]
DP rank 0, Prompt: 'Hello, my name is', Generated text: " Emily and I'm a huge fan of your YouTube channel! Your content is so"
DP rank 0, Prompt: 'The president of the United States is', Generated text: ' the head of state and government. This is the most obvious job in the United'
DP rank 0, Prompt: 'The capital of France is', Generated text: " Paris. That's all you need to know.\n\nThis response is a simple example"
DP rank 0, Prompt: 'The future of AI is', Generated text: ' being shaped by many factors, including advancements in computing power, increased data availability,'
DP rank 0, Prompt: 'Hello, my name is', Generated text: ' Ish, and I am a big fan of your work. I have been following'
Processed prompts: 100%|██████████████████████████████████████████████████████████████████████████████████████| 200/200 [00:00<00:00, 356.21it/s, est. speed input: 2315.58 toks/s, output: 7117.69 toks/s]
DP rank 1, Prompt: 'Hello, my name is', Generated text: " Emily and I'm a huge fan of your YouTube channel! Your content is so engaging, informative,"
DP rank 1, Prompt: 'The president of the United States is', Generated text: ' the head of state and government. This is the most obvious job in the United States. The President'
DP rank 1, Prompt: 'The capital of France is', Generated text: " Paris. That's all you need to know.\n\nThis response is a simple example of a prompt that"
DP rank 1, Prompt: 'The future of AI is', Generated text: ' being shaped by many factors, including advancements in computing power, increased data availability, and advancements in machine'
DP rank 1, Prompt: 'Hello, my name is', Generated text: ' Ish, and I am a big fan of your work. I have been following your blog for a'
(EngineCore_0 pid=7862) Exception in thread Thread-2 (process_output_sockets):
(EngineCore_0 pid=7862) Traceback (most recent call last):
(EngineCore_0 pid=7862) File "/usr/lib/python3.12/threading.py", line 1073, in _bootstrap_inner
(EngineCore_0 pid=7862) self.run()
(EngineCore_0 pid=7862) File "/usr/lib/python3.12/threading.py", line 1010, in run
(EngineCore_0 pid=7862) self._target(*self._args, **self._kwargs)
(EngineCore_0 pid=7862) File "/usr/local/lib/python3.12/dist-packages/vllm/v1/engine/core.py", line 720, in process_output_sockets
(EngineCore_0 pid=7862) assert coord_socket is not None
(EngineCore_0 pid=7862) ^^^^^^^^^^^^^^^^^^^^^^^^
(EngineCore_0 pid=7862) AssertionError

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions