-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodified_main_to_detect_spikes.py
127 lines (103 loc) · 5.25 KB
/
modified_main_to_detect_spikes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import pandas as pd
import matplotlib.pyplot as plt
from scipy.signal import find_peaks
from data_preprocessing import load_nyt_data, load_ccc_data
def detect_spikes(county_data, window=7, z_threshold=2):
county_data['rolling_mean'] = county_data['new_cases'].rolling(window=window).mean()
county_data['rolling_std'] = county_data['new_cases'].rolling(window=window).std()
county_data['z_score'] = (county_data['new_cases'] - county_data['rolling_mean']) / county_data['rolling_std']
county_data['is_spike'] = county_data['z_score'] > z_threshold
clean_data = county_data.dropna(subset=['rolling_mean', 'rolling_std']).copy()
height_threshold = clean_data['rolling_mean'] + z_threshold * clean_data['rolling_std']
peaks, _ = find_peaks(clean_data['new_cases'], height=height_threshold.values)
county_data['is_peak'] = False
county_data.loc[clean_data.iloc[peaks].index, 'is_peak'] = True
return county_data
def correlate_spikes_with_events(county_data, events, time_window=14):
correlations = []
for _, event in events.iterrows():
event_date = event['date']
start_date = event_date - pd.Timedelta(days=time_window)
end_date = event_date + pd.Timedelta(days=time_window)
spike_cases = county_data.loc[start_date:end_date, 'new_cases']
correlations.append({
'event_date': event_date,
'event_type': event.get('event_type', 'Unknown'),
'event_valence': event.get('event_valence', 'Neutral'),
'event_size': event.get('event_size', 'N/A'),
'mean_cases_near_event': spike_cases.mean(),
'max_cases_near_event': spike_cases.max(),
'total_cases_near_event': spike_cases.sum()
})
return pd.DataFrame(correlations)
def plot_spikes(county_data):
plt.figure(figsize=(12, 6))
plt.plot(county_data['new_cases'], label="New Cases", color="blue")
plt.scatter(county_data.index[county_data['is_spike']],
county_data['new_cases'][county_data['is_spike']],
color="red", label="Detected Spikes")
plt.title("COVID-19 Case Counts with Detected Spikes")
plt.xlabel("Date")
plt.ylabel("New Cases")
plt.legend()
plt.grid()
plt.show()
def plot_events_vs_spikes(county_data, events, county_fips):
plt.figure(figsize=(12, 6))
plt.plot(county_data['new_cases'], label="New Cases", color="blue")
plt.scatter(county_data.index[county_data['is_spike']],
county_data['new_cases'][county_data['is_spike']],
color="red", label="Detected Spikes")
for i, event_date in enumerate(events['date']):
if i == 0:
plt.axvline(x=event_date, color='orange', linestyle='--', label='Event Date')
else:
plt.axvline(x=event_date, color='orange', linestyle='--')
plt.title(f"COVID-19 Case Counts with Events and Detected Spikes for county {county_fips}")
plt.xlabel("Date")
plt.ylabel("New Cases")
plt.legend()
plt.grid()
plt.show()
def analyze_valence_effects(correlation_results):
valence_groups = correlation_results.groupby('event_valence')
valence_summary = valence_groups['max_cases_near_event'].mean().sort_values(ascending=False)
print("Average Max Cases Near Events by Valence:")
print(valence_summary)
return valence_summary
def main():
nyt_filepath = './datasets/us-counties-2020.csv'
ccc_filepath = './datasets/ccc_filtered.csv'
print("Loading datasets...")
nyt_data = load_nyt_data(nyt_filepath)
ccc_data = load_ccc_data(ccc_filepath)
if nyt_data.empty:
raise ValueError("NYT dataset is empty. Check the file and preprocessing.")
if ccc_data.empty:
raise ValueError("CCC dataset is empty. Check the file and preprocessing.")
with open("./datasets/county_list.txt") as file:
for fips in file:
county_fips = fips.strip()
print(f"Filtering data for county FIPS: {county_fips}")
county_data = nyt_data[nyt_data['fips'] == county_fips].set_index('date')
if county_data.empty:
print(f"No data found for FIPS {county_fips} in NYT dataset.")
continue
county_data['new_cases'] = county_data['new_cases'].clip(lower=0)
print("Detecting spikes in case data...")
county_data = detect_spikes(county_data)
#plot_spikes(county_data)
print("Analyzing correlation with events...")
county_events = ccc_data[(ccc_data['fips_code'] == county_fips) & (ccc_data['date'] >= '2020-01-01')]
if not county_events.empty:
correlation_results = correlate_spikes_with_events(county_data, county_events)
print("Correlation results:")
print(correlation_results)
plot_events_vs_spikes(county_data, county_events, county_fips)
analyze_valence_effects(correlation_results)
else:
print("No CCC events found for the selected county.")
if __name__ == "__main__":
main()
counties_I_noticed_spikes_in = [41067, 51520, 28047, 36101, 54091, 35005, 26115, 41041, 29031, 36099, 47187, 27131, 48441, 53029,
21185, 42005, 51810, 15009, 37077, 48005, 25007, 40115, 22061]