|
21 | 21 | "cell_type": "markdown",
|
22 | 22 | "metadata": {},
|
23 | 23 | "source": [
|
24 |
| - "### 1.Write a NumPy program to get the numpy version and show numpy build configuration." |
| 24 | + "## 1.Write a NumPy program to get the numpy version and show numpy build configuration." |
25 | 25 | ]
|
26 | 26 | },
|
27 | 27 | {
|
28 | 28 | "cell_type": "code",
|
29 |
| - "execution_count": null, |
| 29 | + "execution_count": 5, |
30 | 30 | "metadata": {},
|
31 |
| - "outputs": [], |
32 |
| - "source": [] |
| 31 | + "outputs": [ |
| 32 | + { |
| 33 | + "name": "stdout", |
| 34 | + "output_type": "stream", |
| 35 | + "text": [ |
| 36 | + "NumPy Version: 1.16.4\n", |
| 37 | + "\n", |
| 38 | + "Configuration:\n", |
| 39 | + "===============\n", |
| 40 | + "mkl_info:\n", |
| 41 | + " libraries = ['mkl_rt']\n", |
| 42 | + " library_dirs = ['C:/ProgramData/Anaconda3\\\\Library\\\\lib']\n", |
| 43 | + " define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]\n", |
| 44 | + " include_dirs = ['C:\\\\Program Files (x86)\\\\IntelSWTools\\\\compilers_and_libraries_2019.0.117\\\\windows\\\\mkl', 'C:\\\\Program Files (x86)\\\\IntelSWTools\\\\compilers_and_libraries_2019.0.117\\\\windows\\\\mkl\\\\include', 'C:\\\\Program Files (x86)\\\\IntelSWTools\\\\compilers_and_libraries_2019.0.117\\\\windows\\\\mkl\\\\lib', 'C:/ProgramData/Anaconda3\\\\Library\\\\include']\n", |
| 45 | + "blas_mkl_info:\n", |
| 46 | + " libraries = ['mkl_rt']\n", |
| 47 | + " library_dirs = ['C:/ProgramData/Anaconda3\\\\Library\\\\lib']\n", |
| 48 | + " define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]\n", |
| 49 | + " include_dirs = ['C:\\\\Program Files (x86)\\\\IntelSWTools\\\\compilers_and_libraries_2019.0.117\\\\windows\\\\mkl', 'C:\\\\Program Files (x86)\\\\IntelSWTools\\\\compilers_and_libraries_2019.0.117\\\\windows\\\\mkl\\\\include', 'C:\\\\Program Files (x86)\\\\IntelSWTools\\\\compilers_and_libraries_2019.0.117\\\\windows\\\\mkl\\\\lib', 'C:/ProgramData/Anaconda3\\\\Library\\\\include']\n", |
| 50 | + "blas_opt_info:\n", |
| 51 | + " libraries = ['mkl_rt']\n", |
| 52 | + " library_dirs = ['C:/ProgramData/Anaconda3\\\\Library\\\\lib']\n", |
| 53 | + " define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]\n", |
| 54 | + " include_dirs = ['C:\\\\Program Files (x86)\\\\IntelSWTools\\\\compilers_and_libraries_2019.0.117\\\\windows\\\\mkl', 'C:\\\\Program Files (x86)\\\\IntelSWTools\\\\compilers_and_libraries_2019.0.117\\\\windows\\\\mkl\\\\include', 'C:\\\\Program Files (x86)\\\\IntelSWTools\\\\compilers_and_libraries_2019.0.117\\\\windows\\\\mkl\\\\lib', 'C:/ProgramData/Anaconda3\\\\Library\\\\include']\n", |
| 55 | + "lapack_mkl_info:\n", |
| 56 | + " libraries = ['mkl_rt']\n", |
| 57 | + " library_dirs = ['C:/ProgramData/Anaconda3\\\\Library\\\\lib']\n", |
| 58 | + " define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]\n", |
| 59 | + " include_dirs = ['C:\\\\Program Files (x86)\\\\IntelSWTools\\\\compilers_and_libraries_2019.0.117\\\\windows\\\\mkl', 'C:\\\\Program Files (x86)\\\\IntelSWTools\\\\compilers_and_libraries_2019.0.117\\\\windows\\\\mkl\\\\include', 'C:\\\\Program Files (x86)\\\\IntelSWTools\\\\compilers_and_libraries_2019.0.117\\\\windows\\\\mkl\\\\lib', 'C:/ProgramData/Anaconda3\\\\Library\\\\include']\n", |
| 60 | + "lapack_opt_info:\n", |
| 61 | + " libraries = ['mkl_rt']\n", |
| 62 | + " library_dirs = ['C:/ProgramData/Anaconda3\\\\Library\\\\lib']\n", |
| 63 | + " define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]\n", |
| 64 | + " include_dirs = ['C:\\\\Program Files (x86)\\\\IntelSWTools\\\\compilers_and_libraries_2019.0.117\\\\windows\\\\mkl', 'C:\\\\Program Files (x86)\\\\IntelSWTools\\\\compilers_and_libraries_2019.0.117\\\\windows\\\\mkl\\\\include', 'C:\\\\Program Files (x86)\\\\IntelSWTools\\\\compilers_and_libraries_2019.0.117\\\\windows\\\\mkl\\\\lib', 'C:/ProgramData/Anaconda3\\\\Library\\\\include']\n", |
| 65 | + "None\n" |
| 66 | + ] |
| 67 | + } |
| 68 | + ], |
| 69 | + "source": [ |
| 70 | + "import numpy as np\n", |
| 71 | + "\n", |
| 72 | + "print('NumPy Version:', np.__version__)\n", |
| 73 | + "print('\\nConfiguration:')\n", |
| 74 | + "print('='*15)\n", |
| 75 | + "print(np.show_config())" |
| 76 | + ] |
33 | 77 | },
|
34 | 78 | {
|
35 | 79 | "cell_type": "markdown",
|
36 | 80 | "metadata": {},
|
37 | 81 | "source": [
|
38 |
| - "### 2. Write a NumPy program to get help on the add function." |
| 82 | + "## 2. Write a NumPy program to get help on the add function." |
39 | 83 | ]
|
40 | 84 | },
|
41 | 85 | {
|
42 | 86 | "cell_type": "code",
|
43 |
| - "execution_count": null, |
| 87 | + "execution_count": 6, |
44 | 88 | "metadata": {},
|
45 |
| - "outputs": [], |
46 |
| - "source": [] |
| 89 | + "outputs": [ |
| 90 | + { |
| 91 | + "name": "stdout", |
| 92 | + "output_type": "stream", |
| 93 | + "text": [ |
| 94 | + "add(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])\n", |
| 95 | + "\n", |
| 96 | + "Add arguments element-wise.\n", |
| 97 | + "\n", |
| 98 | + "Parameters\n", |
| 99 | + "----------\n", |
| 100 | + "x1, x2 : array_like\n", |
| 101 | + " The arrays to be added. If ``x1.shape != x2.shape``, they must be\n", |
| 102 | + " broadcastable to a common shape (which may be the shape of one or\n", |
| 103 | + " the other).\n", |
| 104 | + "out : ndarray, None, or tuple of ndarray and None, optional\n", |
| 105 | + " A location into which the result is stored. If provided, it must have\n", |
| 106 | + " a shape that the inputs broadcast to. If not provided or `None`,\n", |
| 107 | + " a freshly-allocated array is returned. A tuple (possible only as a\n", |
| 108 | + " keyword argument) must have length equal to the number of outputs.\n", |
| 109 | + "where : array_like, optional\n", |
| 110 | + " Values of True indicate to calculate the ufunc at that position, values\n", |
| 111 | + " of False indicate to leave the value in the output alone.\n", |
| 112 | + "**kwargs\n", |
| 113 | + " For other keyword-only arguments, see the\n", |
| 114 | + " :ref:`ufunc docs <ufuncs.kwargs>`.\n", |
| 115 | + "\n", |
| 116 | + "Returns\n", |
| 117 | + "-------\n", |
| 118 | + "add : ndarray or scalar\n", |
| 119 | + " The sum of `x1` and `x2`, element-wise.\n", |
| 120 | + " This is a scalar if both `x1` and `x2` are scalars.\n", |
| 121 | + "\n", |
| 122 | + "Notes\n", |
| 123 | + "-----\n", |
| 124 | + "Equivalent to `x1` + `x2` in terms of array broadcasting.\n", |
| 125 | + "\n", |
| 126 | + "Examples\n", |
| 127 | + "--------\n", |
| 128 | + ">>> np.add(1.0, 4.0)\n", |
| 129 | + "5.0\n", |
| 130 | + ">>> x1 = np.arange(9.0).reshape((3, 3))\n", |
| 131 | + ">>> x2 = np.arange(3.0)\n", |
| 132 | + ">>> np.add(x1, x2)\n", |
| 133 | + "array([[ 0., 2., 4.],\n", |
| 134 | + " [ 3., 5., 7.],\n", |
| 135 | + " [ 6., 8., 10.]])\n", |
| 136 | + "None\n" |
| 137 | + ] |
| 138 | + } |
| 139 | + ], |
| 140 | + "source": [ |
| 141 | + "print(np.info(np.add))" |
| 142 | + ] |
| 143 | + }, |
| 144 | + { |
| 145 | + "cell_type": "markdown", |
| 146 | + "metadata": {}, |
| 147 | + "source": [ |
| 148 | + "## 3. Write a NumPy program to test whether none of the elements of a given array is zero. " |
| 149 | + ] |
47 | 150 | },
|
48 | 151 | {
|
49 | 152 | "cell_type": "code",
|
50 |
| - "execution_count": null, |
| 153 | + "execution_count": 14, |
51 | 154 | "metadata": {},
|
52 |
| - "outputs": [], |
53 |
| - "source": [] |
| 155 | + "outputs": [ |
| 156 | + { |
| 157 | + "name": "stdout", |
| 158 | + "output_type": "stream", |
| 159 | + "text": [ |
| 160 | + "Checking if none of the array emements have 0:\n", |
| 161 | + "False\n", |
| 162 | + "Checking if at least one of the array emement is 0: \n", |
| 163 | + "True\n", |
| 164 | + "Checking if at least one of the array emement is 0: \n", |
| 165 | + "False\n" |
| 166 | + ] |
| 167 | + } |
| 168 | + ], |
| 169 | + "source": [ |
| 170 | + "# Here we mainly checking whether all the elements are non zero or not\n", |
| 171 | + "\n", |
| 172 | + "import numpy as np\n", |
| 173 | + "\n", |
| 174 | + "arr1 = np.array([0, 1, 2, 3])\n", |
| 175 | + "print('Checking if none of the array emements have 0:') # returns 'False' if one of the array element is 0\n", |
| 176 | + "print(np.all(arr1))\n", |
| 177 | + "\n", |
| 178 | + "arr2 = np.array([1, 2, 3, 4])\n", |
| 179 | + "print('Checking if at least one of the array emement is 0: ') # returns 'True' if 0 is not present in the array emements\n", |
| 180 | + "print(np.all(arr2))\n", |
| 181 | + "\n", |
| 182 | + "arr3 = np.array([0, 0, 0, 0])\n", |
| 183 | + "print('Checking if at least one of the array emement is 0: ') # returns 'False' if one of the array element is 0\n", |
| 184 | + "print(np.all(arr3))" |
| 185 | + ] |
| 186 | + }, |
| 187 | + { |
| 188 | + "cell_type": "markdown", |
| 189 | + "metadata": {}, |
| 190 | + "source": [ |
| 191 | + "## 4. Write a NumPy program to test if any of the elements of a given array is non-zero." |
| 192 | + ] |
| 193 | + }, |
| 194 | + { |
| 195 | + "cell_type": "code", |
| 196 | + "execution_count": 18, |
| 197 | + "metadata": {}, |
| 198 | + "outputs": [ |
| 199 | + { |
| 200 | + "name": "stdout", |
| 201 | + "output_type": "stream", |
| 202 | + "text": [ |
| 203 | + "Checking if none of the array emements have 0:\n", |
| 204 | + "True\n", |
| 205 | + "Checking if at least one of the array emement is 0: \n", |
| 206 | + "True\n", |
| 207 | + "Checking if at least one of the array emement is 0: \n", |
| 208 | + "False\n" |
| 209 | + ] |
| 210 | + } |
| 211 | + ], |
| 212 | + "source": [ |
| 213 | + "# Here we mainly checking if any of the array elements contains other than '0'\n", |
| 214 | + "\n", |
| 215 | + "import numpy as np\n", |
| 216 | + "\n", |
| 217 | + "arr1 = np.array([0, 1, 2, 3])\n", |
| 218 | + "print('Checking if none of the array emements have 0:') # returns 'True' if one of the array element is not 0\n", |
| 219 | + "print(np.any(arr1))\n", |
| 220 | + "\n", |
| 221 | + "arr2 = np.array([1, 2, 3, 4])\n", |
| 222 | + "print('Checking if at least one of the array emement is 0: ') # returns 'True' if one of the array element is not 0\n", |
| 223 | + "print(np.any(arr2))\n", |
| 224 | + "\n", |
| 225 | + "arr3 = np.array([0, 0, 0, 0])\n", |
| 226 | + "print('Checking if at least one of the array emement is 0: ') # returns 'False' if all of the array element is 0\n", |
| 227 | + "print(np.any(arr3))" |
| 228 | + ] |
| 229 | + }, |
| 230 | + { |
| 231 | + "cell_type": "markdown", |
| 232 | + "metadata": {}, |
| 233 | + "source": [ |
| 234 | + "## 5. Write a NumPy program to test a given array element-wise for finiteness (not infinity or not a Number)." |
| 235 | + ] |
54 | 236 | },
|
55 | 237 | {
|
56 | 238 | "cell_type": "code",
|
|
0 commit comments