|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | + |
| 3 | +import sys |
| 4 | +import torch |
| 5 | +import argparse |
| 6 | +import random |
| 7 | + |
| 8 | +from torch.autograd import Variable |
| 9 | + |
| 10 | +from nmt import read_corpus, data_iter |
| 11 | +from nmt import NMT, to_input_variable |
| 12 | + |
| 13 | +from lm import LMProb |
| 14 | +from lm import model |
| 15 | + |
| 16 | +def dual(args): |
| 17 | + vocabs = {} |
| 18 | + opts = {} |
| 19 | + state_dicts = {} |
| 20 | + train_srcs = {} |
| 21 | + lms = {} |
| 22 | + |
| 23 | + # load model params & training data |
| 24 | + print('load modelA from [{:s}]'.format(args.modelA_bin), file=sys.stderr) |
| 25 | + params = torch.load(args.modelA_bin, map_location=lambda storage, loc: storage) |
| 26 | + vocabs['A'] = params['vocab'] |
| 27 | + opts['A'] = params['args'] |
| 28 | + state_dicts['A'] = params['state_dict'] |
| 29 | + print('load train_srcA from [{:s}]'.format(args.train_srcA), file=sys.stderr) |
| 30 | + train_srcs['A'] = read_corpus(args.train_srcA, source='src') |
| 31 | + print('load lmA from [{:s}]'.format(args.lmA), file=sys.stderr) |
| 32 | + lms['A'] = LMProb(args.lmA, args.lmAdict) |
| 33 | + |
| 34 | + print('load modelB from [{:s}]'.format(args.modelB_bin), file=sys.stderr) |
| 35 | + params = torch.load(args.modelB_bin, map_location=lambda storage, loc: storage) |
| 36 | + vocabs['B'] = params['vocab'] |
| 37 | + opts['B'] = params['args'] |
| 38 | + state_dicts['B'] = params['state_dict'] |
| 39 | + print('load train_srcB from [{:s}]'.format(args.train_srcB), file=sys.stderr) |
| 40 | + train_srcs['B'] = read_corpus(args.train_srcB, source='src') |
| 41 | + print('load lmB from [{:s}]'.format(args.lmB), file=sys.stderr) |
| 42 | + lms['B'] = LMProb(args.lmB, args.lmBdict) |
| 43 | + |
| 44 | + models = {} |
| 45 | + optimizers = {} |
| 46 | + |
| 47 | + for m in ['A', 'B']: |
| 48 | + # build model |
| 49 | + models[m] = NMT(opts[m], vocabs[m]) |
| 50 | + models[m].load_state_dict(state_dicts[m]) |
| 51 | + models[m].train() |
| 52 | + models[m] = models[m].cuda() |
| 53 | + |
| 54 | + random.shuffle(train_srcs[m]) |
| 55 | + |
| 56 | + # optimizer |
| 57 | + optimizers[m] = torch.optim.Adam(models[m].parameters()) |
| 58 | + |
| 59 | + # loss function |
| 60 | + loss_nll = torch.nn.NLLLoss() |
| 61 | + loss_ce = torch.nn.CrossEntropyLoss() |
| 62 | + |
| 63 | + epoch = 0 |
| 64 | + while True: |
| 65 | + if epoch == 2: |
| 66 | + break |
| 67 | + epoch += 1 |
| 68 | + print('start of epoch {:d}'.format(epoch)) |
| 69 | + |
| 70 | + data = {} |
| 71 | + data['A'] = iter(train_srcs['A']) |
| 72 | + data['B'] = iter(train_srcs['B']) |
| 73 | + |
| 74 | + for t in range(0, len(train_srcs['A'])): |
| 75 | + print('sent', t) |
| 76 | + for m in ['A', 'B']: |
| 77 | + lm_probs = [] |
| 78 | + |
| 79 | + NLL_losses = [] |
| 80 | + CE_losses = [] |
| 81 | + |
| 82 | + modelA = models[m] |
| 83 | + modelB = models[change(m)] |
| 84 | + lmB = lms[change(m)] |
| 85 | + optimizerA = optimizers[m] |
| 86 | + optimizerB = optimizers[change(m)] |
| 87 | + vocabB = vocabs[change(m)] |
| 88 | + s = next(data[m]) |
| 89 | + |
| 90 | + hyps = modelA.beam(s, beam_size=5) |
| 91 | + |
| 92 | + for ids, smid, dist in hyps: |
| 93 | + var_ids = torch.autograd.Variable(torch.LongTensor(ids[1:]), requires_grad=False) |
| 94 | + NLL_losses.append(loss_nll(dist, var_ids).cpu()) |
| 95 | + |
| 96 | + lm_probs.append(lmB.get_prob(smid)) |
| 97 | + |
| 98 | + src_sent_var = to_input_variable([smid], vocabB.src, cuda=True) |
| 99 | + tgt_sent_var = to_input_variable([['<s>'] + s + ['</s>']], vocabB.tgt, cuda=True) |
| 100 | + src_sent_len = [len(smid)] |
| 101 | + |
| 102 | + score = modelB(src_sent_var, src_sent_len, tgt_sent_var[:-1]).squeeze(1) |
| 103 | + |
| 104 | + CE_losses.append(loss_ce(score, tgt_sent_var[1:].view(-1)).cpu()) |
| 105 | + |
| 106 | + r1_mean = sum(lm_probs) / len(lm_probs) |
| 107 | + r1 = [Variable(torch.FloatTensor([p - r1_mean]), requires_grad=False) for p in lm_probs] |
| 108 | + |
| 109 | + r2_mean = sum(CE_losses) / len(CE_losses) |
| 110 | + r2 = [Variable(-(l.data - r2_mean.data), requires_grad=False) for l in CE_losses] |
| 111 | + |
| 112 | + rk = [a + b for a, b in zip(r1, r2)] |
| 113 | + |
| 114 | + optimizerA.zero_grad() |
| 115 | + optimizerB.zero_grad() |
| 116 | + |
| 117 | + torch.mean(torch.cat(NLL_losses) * torch.cat(rk)).backward() |
| 118 | + torch.mean(torch.cat(CE_losses)).backward() |
| 119 | + |
| 120 | + optimizerA.step() |
| 121 | + optimizerB.step() |
| 122 | + |
| 123 | + |
| 124 | +def change(m): |
| 125 | + if m == 'A': |
| 126 | + return 'B' |
| 127 | + else: |
| 128 | + return 'A' |
| 129 | + |
| 130 | +if __name__ == '__main__': |
| 131 | + parser = argparse.ArgumentParser() |
| 132 | + parser.add_argument('modelA_bin') |
| 133 | + parser.add_argument('modelB_bin') |
| 134 | + parser.add_argument('lmA') |
| 135 | + parser.add_argument('lmAdict') |
| 136 | + parser.add_argument('lmB') |
| 137 | + parser.add_argument('lmBdict') |
| 138 | + parser.add_argument('train_srcA') |
| 139 | + parser.add_argument('train_srcB') |
| 140 | + args = parser.parse_args() |
| 141 | + |
| 142 | + dual(args) |
| 143 | + |
0 commit comments