-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathpytorch_model.py
230 lines (197 loc) · 7.8 KB
/
pytorch_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import time
from tqdm import tqdm
import torch
from torch import nn, optim
from torch.autograd import Variable
from torch.nn import functional as F
from logger import get_logger
from utils import (batch_generator, encode_text, generate_seed, ID2CHAR, main,
make_dirs, VOCAB_SIZE)
logger = get_logger(__name__)
class Model(nn.Module):
"""
build character embeddings LSTM text generation model.
"""
def __init__(self, vocab_size=VOCAB_SIZE, embedding_size=32,
rnn_size=128, num_layers=2, drop_rate=0.0):
super(Model, self).__init__()
self.args = {"vocab_size": vocab_size, "embedding_size": embedding_size,
"rnn_size": rnn_size, "num_layers": num_layers,
"drop_rate": drop_rate}
self.encoder = nn.Embedding(vocab_size, embedding_size)
self.dropout = nn.Dropout(drop_rate)
self.rnn = nn.LSTM(embedding_size, rnn_size, num_layers, dropout=drop_rate)
self.decoder = nn.Linear(rnn_size, vocab_size)
def forward(self, inputs, state):
# input shape: [seq_len, batch_size]
embed_seq = self.dropout(self.encoder(inputs))
# shape: [seq_len, batch_size, embedding_size]
rnn_out, state = self.rnn(embed_seq, state)
# rnn_out shape: [seq_len, batch_size, rnn_size]
# hidden shape: [2, num_layers, batch_size, rnn_size]
rnn_out = self.dropout(rnn_out)
# shape: [seq_len, batch_size, rnn_size]
logits = self.decoder(rnn_out.view(-1, rnn_out.size(2)))
# output shape: [seq_len * batch_size, vocab_size]
return logits, state
def predict(self, input, hidden):
# input shape: [seq_len, batch_size]
logits, hidden = self.forward(input, hidden)
# logits shape: [seq_len * batch_size, vocab_size]
# hidden shape: [2, num_layers, batch_size, rnn_size]
probs = F.softmax(logits)
# shape: [seq_len * batch_size, vocab_size]
probs = probs.view(input.size(0), input.size(1), probs.size(1))
# output shape: [seq_len, batch_size, vocab_size]
return probs, hidden
def init_state(self, batch_size=1):
"""
initialises rnn states.
"""
return (Variable(torch.zeros(self.args["num_layers"], batch_size, self.args["rnn_size"])),
Variable(torch.zeros(self.args["num_layers"], batch_size, self.args["rnn_size"])))
def save(self, checkpoint_path="model.ckpt"):
"""
saves model and args to checkpoint_path.
"""
checkpoint = {"args": self.args, "state_dict": self.state_dict()}
with open(checkpoint_path, "wb") as f:
torch.save(checkpoint, f)
logger.info("model saved: %s.", checkpoint_path)
@classmethod
def load(cls, checkpoint_path):
"""
loads model from checkpoint_path.
"""
with open(checkpoint_path, "rb") as f:
checkpoint = torch.load(f)
model = cls(**checkpoint["args"])
model.load_state_dict(checkpoint["state_dict"])
logger.info("model loaded: %s.", checkpoint_path)
return model
def sample_from_probs(probs, top_n=10):
"""
truncated weighted random choice.
"""
_, indices = torch.sort(probs)
# set probabilities after top_n to 0
probs[indices.data[:-top_n]] = 0
sampled_index = torch.multinomial(probs, 1)
return sampled_index
def generate_text(model, seed, length=512, top_n=10):
"""
generates text of specified length from trained model
with given seed character sequence.
"""
logger.info("generating %s characters from top %s choices.", length, top_n)
logger.info('generating with seed: "%s".', seed)
generated = seed
encoded = encode_text(seed)
encoded = Variable(torch.from_numpy(encoded), volatile=True)
model.eval()
x = encoded[:-1].unsqueeze(1)
# input shape: [seq_len, 1]
state = model.init_state()
# get rnn state due to seed sequence
_, state = model.predict(x, state)
next_index = encoded[-1:]
for i in range(length):
x = next_index.unsqueeze(1)
# input shape: [1, 1]
probs, state = model.predict(x, state)
# output shape: [1, 1, vocab_size]
next_index = sample_from_probs(probs.squeeze(), top_n)
# append to sequence
generated += ID2CHAR[next_index.data[0]]
logger.info("generated text: \n%s\n", generated)
return generated
def train_main(args):
"""
trains model specfied in args.
main method for train subcommand.
"""
# load text
with open(args.text_path) as f:
text = f.read()
logger.info("corpus length: %s.", len(text))
# load or build model
if args.restore:
logger.info("restoring model.")
load_path = args.checkpoint_path if args.restore is True else args.restore
model = Model.load(load_path)
else:
model = Model(vocab_size=VOCAB_SIZE,
embedding_size=args.embedding_size,
rnn_size=args.rnn_size,
num_layers=args.num_layers,
drop_rate=args.drop_rate)
# make checkpoint directory
make_dirs(args.checkpoint_path)
model.save(args.checkpoint_path)
# loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)
# training start
num_batches = (len(text) - 1) // (args.batch_size * args.seq_len)
data_iter = batch_generator(encode_text(text), args.batch_size, args.seq_len)
state = model.init_state(args.batch_size)
logger.info("start of training.")
time_train = time.time()
for i in range(args.num_epochs):
epoch_losses = torch.Tensor(num_batches)
time_epoch = time.time()
# training epoch
for j in tqdm(range(num_batches), desc="epoch {}/{}".format(i + 1, args.num_epochs)):
# prepare inputs
x, y = next(data_iter)
x = Variable(torch.from_numpy(x)).t()
y = Variable(torch.from_numpy(y)).t().contiguous()
# reset state variables to remove their history
state = tuple([Variable(var.data) for var in state])
# prepare model
model.train()
model.zero_grad()
# calculate loss
logits, state = model.forward(x, state)
loss = criterion(logits, y.view(-1))
epoch_losses[j] = loss.data[0]
# calculate gradients
loss.backward()
# clip gradient norm
nn.utils.clip_grad_norm(model.parameters(), args.clip_norm)
# apply gradient update
optimizer.step()
# logs
duration_epoch = time.time() - time_epoch
logger.info("epoch: %s, duration: %ds, loss: %.6g.",
i + 1, duration_epoch, epoch_losses.mean())
# checkpoint
model.save(args.checkpoint_path)
# generate text
seed = generate_seed(text)
generate_text(model, seed)
# training end
duration_train = time.time() - time_train
logger.info("end of training, duration: %ds.", duration_train)
# generate text
seed = generate_seed(text)
generate_text(model, seed, 1024, 3)
return model
def generate_main(args):
"""
generates text from trained model specified in args.
main method for generate subcommand.
"""
# load model
inference_model = Model.load(args.checkpoint_path)
# create seed if not specified
if args.seed is None:
with open(args.text_path) as f:
text = f.read()
seed = generate_seed(text)
logger.info("seed sequence generated from %s.", args.text_path)
else:
seed = args.seed
return generate_text(inference_model, seed, args.length, args.top_n)
if __name__ == "__main__":
main("PyTorch", train_main, generate_main)