-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_my.py
300 lines (242 loc) · 10.7 KB
/
train_my.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import os
import argparse
import time
from pprint import pformat
import logging as log
import torch
from torchvision import transforms as tf
from statistics import mean
import sys
sys.path.append(".")
from utils.envs import initEnv
import data as mydata
import models
from engine import engine
class HyperParams(object):
def __init__(self, config, train_flag=1):
self.cuda = True
self.labels = config['labels']
self.classes = len(self.labels)
self.data_root = config['data_root_dir']
self.model_name = config['model_name']
self.anchors = config["anchor"]
# cuda check
if self.cuda:
if not torch.cuda.is_available():
log.debug('CUDA not available')
self.cuda = False
else:
log.debug('CUDA enabled')
if train_flag == 1:
cur_cfg = config
self.gpus = cur_cfg["gpus"]
self.nworkers = cur_cfg['nworkers']
self.pin_mem = cur_cfg['pin_mem']
dataset = cur_cfg['dataset']
self.trainfile = f'{self.data_root}/{dataset}.pkl'
self.network_size = cur_cfg['input_shape']
self.batch = cur_cfg['batch_size']
self.mini_batch = cur_cfg['mini_batch_size']
self.max_batches = cur_cfg['max_batches']
self.jitter = 0.3
self.flip = 0.5
self.hue = 0.1
self.sat = 1.5
self.val = 1.5
self.learning_rate = cur_cfg['warmup_lr']
self.momentum = cur_cfg['momentum']
self.decay = cur_cfg['decay']
self.lr_steps = cur_cfg['lr_steps']
self.lr_rates = cur_cfg['lr_rates']
self.backup = cur_cfg['backup_interval']
self.bp_steps = cur_cfg['backup_steps']
self.bp_rates = cur_cfg['backup_rates']
self.backup_dir = cur_cfg['backup_dir']
self.resize = cur_cfg['resize_interval']
self.rs_steps = []
self.rs_rates = []
self.weights = cur_cfg['weights']
self.clear = cur_cfg['clear']
elif train_flag == 2:
cur_cfg = config
dataset = cur_cfg['dataset']
self.testfile = f'{self.data_root}/{dataset}.pkl'
self.nworkers = cur_cfg['nworkers']
self.pin_mem = cur_cfg['pin_mem']
self.network_size = cur_cfg['input_shape']
self.batch = cur_cfg['batch_size']
self.weights = cur_cfg['weights']
self.conf_thresh = cur_cfg['conf_thresh']
self.nms_thresh = cur_cfg['nms_thresh']
self.results = cur_cfg['results']
else:
cur_cfg = config
self.network_size = cur_cfg['input_shape']
self.batch = cur_cfg['batch_size']
self.max_iters = cur_cfg['max_iters']
class VOCDataset(mydata.BramboxDataset):
def __init__(self, hyper_params):
anno = hyper_params.trainfile
root = hyper_params.data_root
flip = hyper_params.flip
jitter = hyper_params.jitter
hue, sat, val = hyper_params.hue, hyper_params.sat, hyper_params.val
network_size = hyper_params.network_size
labels = hyper_params.labels
rf = mydata.transform.RandomFlip(flip)
rc = mydata.transform.RandomCropLetterbox(self, jitter)
hsv = mydata.transform.HSVShift(hue, sat, val)
rot = mydata.transform.RandomRotate(jitter_min=-20, jitter_max=20)
it = tf.ToTensor()
img_tf = mydata.transform.Compose([rot, rc, rf, hsv, it])
anno_tf = mydata.transform.Compose([rot, rc, rf])
def identify(img_id):
# return f'{root}/VOCdevkit/{img_id}.jpg'
return f'{img_id}'
super(VOCDataset, self).__init__('anno_pickle', anno, network_size, labels, identify, img_tf, anno_tf)
class VOCTrainingEngine(engine.Engine):
""" This is a custom engine for this training cycle """
def __init__(self, hyper_params):
self.hyper_params = hyper_params
# all in args
self.batch_size = hyper_params.batch
self.mini_batch_size = hyper_params.mini_batch
self.max_batches = hyper_params.max_batches
self.classes = hyper_params.classes
self.cuda = hyper_params.cuda
self.gpus = hyper_params.gpus
self.backup_dir = hyper_params.backup_dir
log.debug('Creating network')
model_name = hyper_params.model_name
# net = models.__dict__[model_name](hyper_params.classes, hyper_params.weights, train_flag=1,
# clear=hyper_params.clear)
if model_name == "TinyYolov3":
net = models.TinyYolov3(hyper_params.classes, hyper_params.weights,anchors=hyper_params.anchors, train_flag=1, clear=hyper_params.clear)
elif model_name == "Yolov3":
net = models.Yolov3(hyper_params.classes, hyper_params.weights, train_flag=1, clear=hyper_params.clear)
else:
print("model name should be 'TinyYolov3' or 'Yolov3', your input {}".format(model_name))
exit()
log.info('Net structure\n\n%s\n' % net)
if self.cuda:
net.cuda()
net = torch.nn.DataParallel(net, device_ids=[i for i in range(len(self.gpus.split(",")))]) # multi-GPU
log.debug('Creating optimizer')
learning_rate = hyper_params.learning_rate
momentum = hyper_params.momentum
decay = hyper_params.decay
batch = hyper_params.batch
log.info(f'Adjusting learning rate to [{learning_rate}]')
optim = torch.optim.SGD(net.parameters(), lr=learning_rate / batch, momentum=momentum, dampening=0,
weight_decay=decay * batch)
log.debug('Creating dataloader')
dataset = VOCDataset(hyper_params)
dataloader = mydata.DataLoader(
dataset,
batch_size=self.mini_batch_size,
shuffle=True,
drop_last=True,
num_workers=hyper_params.nworkers if self.cuda else 0,
pin_memory=hyper_params.pin_mem if self.cuda else False,
collate_fn=mydata.list_collate,
)
super(VOCTrainingEngine, self).__init__(net, optim, dataloader)
self.nloss = self.network.nloss
self.train_loss = [{'tot': [], 'coord': [], 'conf': [], 'cls': []} for _ in range(self.nloss)]
def start(self):
log.debug('Creating additional logging objects')
hyper_params = self.hyper_params
lr_steps = hyper_params.lr_steps
lr_rates = hyper_params.lr_rates
bp_steps = hyper_params.bp_steps
bp_rates = hyper_params.bp_rates
backup = hyper_params.backup
rs_steps = hyper_params.rs_steps
rs_rates = hyper_params.rs_rates
resize = hyper_params.resize
self.add_rate('learning_rate', lr_steps, [lr / self.batch_size for lr in lr_rates])
self.add_rate('backup_rate', bp_steps, bp_rates, backup)
self.add_rate('resize_rate', rs_steps, rs_rates, resize)
self.dataloader.change_input_dim()
def process_batch(self, data):
data, target = data
# to(device)
if self.cuda:
data = data.cuda()
# mydata = torch.autograd.Variable(mydata, requires_grad=True)
loss = self.network(data, target)
loss.backward()
for ii in range(self.nloss):
self.train_loss[ii]['tot'].append(self.network.loss[ii].loss_tot.item() / self.mini_batch_size)
self.train_loss[ii]['coord'].append(self.network.loss[ii].loss_coord.item() / self.mini_batch_size)
self.train_loss[ii]['conf'].append(self.network.loss[ii].loss_conf.item() / self.mini_batch_size)
if self.network.loss[ii].loss_cls is not None:
self.train_loss[ii]['cls'].append(self.network.loss[ii].loss_cls.item() / self.mini_batch_size)
def train_batch(self):
self.optimizer.step()
self.optimizer.zero_grad()
all_tot = 0.0
all_coord = 0.0
all_conf = 0.0
all_cls = 0.0
for ii in range(self.nloss):
tot = mean(self.train_loss[ii]['tot'])
coord = mean(self.train_loss[ii]['coord'])
conf = mean(self.train_loss[ii]['conf'])
all_tot += tot
all_coord += coord
all_conf += conf
#if self.classes > 1:
if True:
cls = mean(self.train_loss[ii]['cls'])
all_cls += cls
#if self.classes > 1:
if True:
log.info(
f'{self.batch} # {ii}: Loss:{round(tot, 5)} (Coord:{round(coord, 2)} Conf:{round(conf, 2)} Cls:{round(cls, 2)})')
else:
log.info(f'{self.batch} # {ii}: Loss:{round(tot, 5)} (Coord:{round(coord, 2)} Conf:{round(conf, 2)})')
#if self.classes > 1:
if True:
log.info(
f'{self.batch} # All : Loss:{round(all_tot, 5)} (Coord:{round(all_coord, 2)} Conf:{round(all_conf, 2)} Cls:{round(all_cls, 2)})')
else:
log.info(
f'{self.batch} # All : Loss:{round(all_tot, 5)} (Coord:{round(all_coord, 2)} Conf:{round(all_conf, 2)})')
self.train_loss = [{'tot': [], 'coord': [], 'conf': [], 'cls': []} for _ in range(self.nloss)]
if self.batch % self.backup_rate == 0:
self.network.save_weights(os.path.join(self.backup_dir, f'weights_{self.batch}.pt'))
if self.batch % 100 == 0:
self.network.save_weights(os.path.join(self.backup_dir, f'backup.pt'))
if self.batch % self.resize_rate == 0:
if self.batch + 200 >= self.max_batches:
finish_flag = True
else:
finish_flag = False
self.dataloader.change_input_dim(finish=finish_flag)
def quit(self):
if self.sigint:
self.network.save_weights(os.path.join(self.backup_dir, f'backup.pt'))
return True
elif self.batch >= self.max_batches:
self.network.save_weights(os.path.join(self.backup_dir, f'final.dw'))
return True
else:
return False
if __name__ == '__main__':
train_flag = 1 # 1 for train, 2 for test, 3 for test speed
model_name = "TinyYolov3"
#model_name = "Yolov3"
config = initEnv(train_flag=train_flag, model_name=model_name)
log.info('Config\n\n%s\n' % pformat(config))
# init env
hyper_params = HyperParams(config, train_flag=train_flag)
# int eng
eng = VOCTrainingEngine(hyper_params)
# run eng
b1 = eng.batch
t1 = time.time()
eng()
t2 = time.time()
b2 = eng.batch
log.info(f'\nDuration of {b2-b1} batches: {t2-t1} seconds [{round((t2-t1)/(b2-b1), 3)} sec/batch]')