|
2 | 2 |
|
3 | 3 | This document contains links to the tutorials that demonstrate how to reproduce material structures from published scientific manuscripts. Each entry lists the tutorial name and the corresponding manuscript reference.
|
4 | 4 |
|
5 |
| ---- |
6 |
| - |
7 | 5 | ## 1. Single-Material Structures
|
8 | 6 |
|
9 | 7 | ### 1.1. 2D Structures
|
10 |
| -#### 1.1.1. [SrTiO3 Slab](slab-strontium-titanate.md) R. I. Eglitis and David Vanderbilt |
11 |
| -"First-principles calculations of atomic and electronic structure of SrTiO3 (001) and (011) surfaces" |
12 |
| -Phys. Rev. B 77, 195408 (2008) |
13 |
| - |
| 8 | +#### 1.1.1. [SrTiO3 Slab](slab-strontium-titanate.md) |
14 | 9 | [DOI: 10.1103/PhysRevB.77.195408](https://doi.org/10.1103/PhysRevB.77.195408){:target='_blank'} [@Eglitis2008; @Mukhopadhyay2006]
|
15 | 10 |
|
16 |
| - |
| 11 | +{ style="max-height:500px;width:auto;" } |
17 | 12 |
|
18 | 13 | ### 1.2. 0D Structures
|
19 |
| -#### 1.2.1. [Gold Nanoclusters](nanocluster-gold.md) |
20 |
| -**A. H. Larsen, J. Kleis, K. S. Thygesen, J. K. Nørskov, and K. W. Jacobsen**, |
21 |
| -"Electronic shell structure and chemisorption on gold nanoparticles", |
22 |
| -*Phys. Rev. B 84, 245429 (2011)*, |
23 |
| - |
| 14 | +#### 1.2.1. [Gold Nanoclusters](nanocluster-gold.md) |
24 | 15 | [DOI: 10.1103/PhysRevB.84.245429](https://doi.org/10.1103/PhysRevB.84.245429){:target='_blank'}. [@Larsen2011]
|
25 |
| - |
26 | 16 |
|
27 |
| ---- |
| 17 | +{ style="max-height:500px;width:auto;" } |
| 18 | + |
| 19 | + |
28 | 20 |
|
29 | 21 | ## 2. Multi-Material Structures
|
30 | 22 |
|
31 | 23 | ### 2.1. Interfaces
|
32 | 24 | #### 2.1.1. [Interface between Graphene and h-BN](interface-2d-2d-graphene-boron-nitride.md)
|
33 |
| -**Jeil Jung, Ashley M. DaSilva, Allan H. MacDonald & Shaffique Adam** |
34 |
| -"Origin of the band gap in graphene on hexagonal boron nitride" |
35 |
| -Nature Communications, 2015 |
| 25 | +[DOI: 10.1038/ncomms7308](https://doi.org/10.1038/ncomms7308){:target='_blank'} [@Jung2015] |
36 | 26 |
|
37 |
| -[DOI: 10.1038/ncomms7308](https://doi.org/10.1038/ncomms7308){:target='_blank'} |
38 |
| - |
| 27 | +{ style="max-height:500px;width:auto;" } |
39 | 28 |
|
40 | 29 | #### 2.1.2. [Interface between Graphene and SiO2 (alpha-quartz)](interface-2d-3d-graphene-silicon-dioxide.md)
|
41 |
| -**Yong-Ju Kang, Joongoo Kang, and K. J. Chang** |
42 |
| -"Electronic structure of graphene and doping effect on SiO2" |
43 |
| -Physical Review B, 2008 |
44 |
| - |
45 | 30 | [DOI: 10.1103/PhysRevB.78.115404](https://doi.org/10.1103/PhysRevB.78.115404){:target='_blank'}
|
46 |
| -") |
47 | 31 |
|
48 |
| -#### 2.1.3. [Interface between Copper and SiO2 (Cristobalite)](interface-3d-3d-copper-silicon-dioxide.md) |
49 |
| -**Shan, T.-R., Devine, B. D., Phillpot, S. R., & Sinnott, S. B.** |
50 |
| -"Molecular dynamics study of the adhesion of Cu/SiO2interfaces using a variable-charge interatomic potential." |
51 |
| -Physical Review B, 83(11). |
| 32 | +"){ style="max-height:500px;width:auto;" } |
52 | 33 |
|
| 34 | +#### 2.1.3. [Interface between Copper and SiO2 (Cristobalite)](interface-3d-3d-copper-silicon-dioxide.md) |
53 | 35 | [DOI: 10.1103/PhysRevB.83.115327](https://doi.org/10.1103/PhysRevB.83.115327){:target='_blank'} [@Shan2011].
|
54 |
| - |
| 36 | + |
| 37 | +{ style="max-height:500px;width:auto;" } |
55 | 38 |
|
56 | 39 | #### 2.1.4. [High-k Metal Gate Stack (Si/SiO2/HfO2/TiN)](heterostructure-silicon-silicon-dioxide-hafnium-dioxide-titanium-nitride.md)
|
57 | 40 | QuantumATK tutorial: [High-k Metal Gate Stack Builder](https://docs.quantumatk.com/tutorials/hkmg_builder/hkmg_builder.html) [@Muller1999; @Robertson2006]
|
58 |
| - |
| 41 | +{ style="max-height:500px;width:auto;" } |
| 42 | + |
59 | 43 |
|
60 | 44 | ### 2.2. Twisted Interfaces
|
61 | 45 | #### 2.2.1. [Twisted Bilayer h-BN nanoribbons](interface-bilayer-twisted-nanoribbons-boron-nitride.md)
|
62 |
| -**Lede Xian, Dante M. Kennes, Nicolas Tancogne-Dejean, Massimo Altarelli, and Angel Rubio**, |
63 |
| -"Multiflat Bands and Strong Correlations in Twisted Bilayer Boron Nitride: Doping-Induced Correlated Insulator and Superconductor" Phys. Rev. Lett. 125, 086402, 20 August 2020 |
64 |
| - |
65 | 46 | [DOI: 10.1021/acs.nanolett.9b00986](https://doi.org/10.1021/acs.nanolett.9b00986){:target='_blank'} [@Xian2020]
|
66 |
| - |
67 | 47 |
|
68 |
| -#### 2.2.2. [Twisted Bilayer MoS2 commensurate lattices](interface-bilayer-twisted-commensurate-lattices-molybdenum-disulfide.md) |
69 |
| -**Kaihui Liu, Liming Zhang, Ting Cao, Chenhao Jin, Diana Qiu, Qin Zhou, Alex Zettl, Peidong Yang, Steve G. Louie & Feng Wang**, |
70 |
| -"Evolution of interlayer coupling in twisted molybdenum disulfide bilayers" Nature Communications volume 5, Article number: 4966 (2014) |
| 48 | +{ style="max-height:500px;width:auto;" } |
71 | 49 |
|
| 50 | +#### 2.2.2. [Twisted Bilayer MoS2 commensurate lattices](interface-bilayer-twisted-commensurate-lattices-molybdenum-disulfide.md) |
72 | 51 | [DOI: 10.1038/ncomms5966](https://doi.org/10.1038/ncomms5966){:target='_blank'} [@Liu2014; @Zhang2016; @Cao2018]
|
73 |
| - |
74 | 52 |
|
75 |
| ---- |
| 53 | +{ style="max-height:500px;width:auto;" } |
| 54 | + |
| 55 | + |
76 | 56 |
|
77 | 57 | ## 3. Defects
|
78 | 58 |
|
79 | 59 | ### 3.1. Point Defects
|
80 | 60 | #### 3.1.1. [Substitutional Point Defects in Graphene](defect-point-substitution-graphene.md)
|
81 |
| -**Yoshitaka Fujimoto and Susumu Saito** |
82 |
| -"Formation, stabilities, and electronic properties of nitrogen defects in graphene" |
83 |
| -Physical Review B, 2011 |
84 |
| - |
85 | 61 | [DOI: 10.1103/PhysRevB.84.245446](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.84.245446){:target='_blank'}
|
86 |
| - |
87 | 62 |
|
88 |
| -#### 3.1.2. [Vacancy-Substitution Pair Defects in GaN](defect-point-pair-gallium-nitride.md) |
89 |
| -**Giacomo Miceli, Alfredo Pasquarello**, |
90 |
| -"Self-compensation due to point defects in Mg-doped GaN", Physical Review B, 2016. |
| 63 | +{ style="max-height:500px;width:auto;" } |
91 | 64 |
|
| 65 | +#### 3.1.2. [Vacancy-Substitution Pair Defects in GaN](defect-point-pair-gallium-nitride.md) |
92 | 66 | [DOI: 10.1103/PhysRevB.93.165207](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.165207){:target='_blank'}. [@Miceli2016]
|
93 |
| - |
94 | 67 |
|
95 |
| -#### 3.1.3. [Vacancy Point Defect in h-BN](defect-point-vacancy-boron-nitride.md) |
96 |
| -**Fabian Bertoldo, Sajid Ali, Simone Manti & Kristian S. Thygesen** |
97 |
| -"Quantum point defects in 2D materials – the QPOD database" |
98 |
| -Nature, 2022 |
| 68 | + |
99 | 69 |
|
| 70 | +#### 3.1.3. [Vacancy Point Defect in h-BN](defect-point-vacancy-boron-nitride.md) |
100 | 71 | [DOI: 10.1038/s41524-022-00730-w](https://doi.org/10.1038/s41524-022-00730-w){:target='_blank'}
|
101 |
| - |
102 | 72 |
|
103 |
| -#### 3.1.4. [Interstitial Point Defect in SnO](defect-point-interstitial-tin-oxide.md) |
104 |
| -A. Togo, F. Oba, and I. Tanaka |
105 |
| -"First-principles calculations of native defects in tin monoxide" |
106 |
| -Physical Review B 74, 195128 (2006) |
| 73 | +{ style="max-height:500px;width:auto;" } |
107 | 74 |
|
| 75 | +#### 3.1.4. [Interstitial Point Defect in SnO](defect-point-interstitial-tin-oxide.md) |
108 | 76 | [DOI: 10.1103/PhysRevB.74.195128](https://doi.org/10.1103/PhysRevB.74.195128){:target='_blank'}. [@Togo2006; @Wang2014; @Na-Phattalung2006]
|
109 |
| - |
| 77 | + |
| 78 | +{ style="max-height:500px;width:auto;" } |
| 79 | + |
110 | 80 |
|
111 | 81 | ### 3.2. Surface Defects
|
112 | 82 | #### 3.2.1. [Island Surface Defect Formation in TiN](defect-surface-island-titanium-nitride.md)
|
113 |
| -**D. G. Sangiovanni, A. B. Mei, D. Edström, L. Hultman, V. Chirita, I. Petrov, and J. E. Greene**, |
114 |
| -"Effects of surface vibrations on interlayer mass transport: Ab initio molecular dynamics investigation of Ti adatom descent pathways and rates from TiN/TiN(001) islands", Physical Review B, 2018. |
115 | 83 | [DOI: 10.1103/PhysRevB.97.035406](https://journals.aps.org/prb/abstract/10.1103/PhysRevB.97.035406){:target='_blank'}. [@Sangiovanni2018]
|
116 |
| - |
117 | 84 |
|
118 |
| -#### 3.2.2. [Step Surface Defect on Pt(111)](defect-surface-step-platinum.md) |
119 |
| -Šljivančanin, Ž., & Hammer, B., "Oxygen dissociation at close-packed Pt terraces, Pt steps, and Ag-covered Pt steps studied with density functional theory." Surface Science, 515(1), 235–244. |
| 85 | +{ style="max-height:500px;width:auto;" } |
120 | 86 |
|
| 87 | +#### 3.2.2. [Step Surface Defect on Pt(111)](defect-surface-step-platinum.md) |
121 | 88 | [DOI: 10.1016/s0039-6028(02)01908-8](https://doi.org/10.1016/s0039-6028(02)01908-8){:target='_blank'}. [@Sljivancanin2002]
|
122 |
| - |
123 | 89 |
|
124 |
| -#### 3.2.3. [Adatom Surface Defects on Graphene](defect-surface-adatom-graphene.md) |
125 |
| -**Kevin T. Chan, J. B. Neaton, and Marvin L. Cohen** |
126 |
| -"First-principles study of metal adatom adsorption on graphene" |
127 |
| -Phys. Rev. B, 2008 |
| 90 | +{ style="max-height:500px;width:auto;" } |
128 | 91 |
|
| 92 | +#### 3.2.3. [Adatom Surface Defects on Graphene](defect-surface-adatom-graphene.md) |
129 | 93 | [DOI: 10.1103/PhysRevB.77.235430](https://doi.org/10.1103/PhysRevB.77.235430){:target='_blank'}
|
130 |
| - |
131 | 94 |
|
132 |
| -### 3.3. Planar Defects |
133 |
| -#### 3.3.1. [Grain Boundary in FCC Metals (Copper)](defect-planar-grain-boundary-3d-fcc-metals-copper.md) |
134 |
| -Timofey Frolov, David L. Olmsted, Mark Asta & Yuri Mishin, "Structural phase transformations in metallic grain boundaries", Nature Communications, volume 4, Article number: 1899 (2013). |
| 95 | +{ style="max-height:500px;width:auto;" } |
| 96 | + |
135 | 97 |
|
| 98 | +### 3.3. Planar Defects |
| 99 | +#### 3.3.1. [Grain Boundary in FCC Metals (Copper)](defect-planar-grain-boundary-3d-fcc-metals-copper.md) |
136 | 100 | [DOI: 10.1038/ncomms2919](https://www.nature.com/articles/ncomms2919){:target='_blank'}. [@Frolov2013]
|
137 |
| - |
138 | 101 |
|
139 |
| -#### 3.3.2. [Grain Boundary (2D) in h-BN](defect-planar-grain-boundary-2d-boron-nitride.md) |
140 |
| -**Qiucheng Li, et al.** |
141 |
| -"Grain Boundary Structures and Electronic Properties of Hexagonal Boron Nitride on Cu(111)" |
142 |
| -ACS Nano, 2015 |
| 102 | +{ style="max-height:500px;width:auto;" } |
143 | 103 |
|
| 104 | +#### 3.3.2. [Grain Boundary (2D) in h-BN](defect-planar-grain-boundary-2d-boron-nitride.md) |
144 | 105 | [DOI: 10.1021/acs.nanolett.5b01852](https://doi.org/10.1021/acs.nanolett.5b01852){:target='_blank'}
|
145 |
| - |
146 | 106 |
|
147 |
| ---- |
| 107 | +{ style="max-height:500px;width:auto;" } |
| 108 | + |
148 | 109 |
|
149 |
| -## 4. Passivation |
150 | 110 |
|
| 111 | +## 4. Passivation |
151 | 112 |
|
152 | 113 | ### 4.1. Edge Passivation
|
153 | 114 | #### 4.1.1. [H-Passivated Silicon Nanowire](passivation-edge-nanowire-silicon.md)
|
154 |
| -B. Aradi, L. E. Ramos, P. Deák, Th. Köhler, F. Bechstedt, R. Q. Zhang, and Th. Frauenheim, |
155 |
| -"Theoretical study of the chemical gap tuning in silicon nanowires" |
156 |
| -Phys. Rev. B 76, 035305 (2007) |
157 |
| -DOI: [10.1103/PhysRevB.76.035305](https://doi.org/10.1103/PhysRevB.76.035305){:target='_blank'} [@Aradi2007] |
158 |
| - |
| 115 | +[DOI: 10.1103/PhysRevB.76.035305](https://doi.org/10.1103/PhysRevB.76.035305){:target='_blank'} [@Aradi2007] |
159 | 116 |
|
| 117 | +{ style="max-height:500px;width:auto;" } |
160 | 118 |
|
161 |
| -### 4.2. Surface Passivation |
162 |
| -#### 4.2.1. [H-Passivated Silicon (100) Surface](passivation-surface-silicon.md) |
163 |
| -Hansen, U., & Vogl, P. |
164 |
| -"Hydrogen passivation of silicon surfaces: A classical molecular-dynamics study." |
165 |
| -Physical Review B, 57(20), 13295–13304. (1998) |
166 | 119 |
|
| 120 | +### 4.2. Surface Passivation |
| 121 | +#### 4.2.1. [H-Passivated Silicon (100) Surface](passivation-surface-silicon.md) |
167 | 122 | [DOI: 10.1103/PhysRevB.57.13295](https://doi.org/10.1103/PhysRevB.57.13295){:target='_blank'}. [@Hansen1998; @Northrup1991; @Boland1990]
|
168 |
| -") |
169 | 123 |
|
170 |
| ---- |
| 124 | +"){ style="max-height:500px;width:auto;" } |
| 125 | + |
171 | 126 |
|
172 |
| -## 5. Perturbations |
173 | 127 |
|
| 128 | +## 5. Perturbations |
174 | 129 |
|
175 | 130 | ### 5.1. Ripples
|
176 | 131 | #### 5.1.1. [Ripple perturbation of a Graphene sheet](perturbation-ripples-graphene.md)
|
177 |
| -Thompson-Flagg, R. C., Moura, M. J. B., & Marder, M. |
178 |
| -"Rippling of graphene" |
179 |
| -EPL (Europhysics Letters), 85(4), 46002 (2009) |
180 |
| - |
181 | 132 | [DOI: 10.1209/0295-5075/85/46002](https://doi.org/10.1209/0295-5075/85/46002){:target='_blank'}. [@ThompsonFlagg2009; @Fasolino2007; @Openov2010]
|
182 |
| - |
183 | 133 |
|
184 |
| ---- |
| 134 | +{ style="max-height:500px;width:auto;" } |
185 | 135 |
|
186 | 136 | ## 6. Other
|
187 | 137 |
|
188 |
| - |
189 | 138 | ### 6.1. Interface Optimization
|
190 | 139 | #### 6.1.1. [Gr/Ni(111) Interface Optimization](optimization-interface-film-xy-position-graphene-nickel.md)
|
191 |
| -Arjun Dahal, Matthias Batzill |
192 |
| -"Graphene–nickel interfaces: a review" |
193 |
| -Nanoscale, 6(5), 2548. (2014) |
194 |
| - |
195 | 140 | [DOI: 10.1039/c3nr05279f](https://doi.org/10.1039/c3nr05279f){:target='_blank'}. [@Dahal2014; @Gamo1997; @Bertoni2004]
|
196 |
| -") |
| 141 | + |
| 142 | +"){ style="max-height:500px;width:auto;" } |
197 | 143 |
|
198 | 144 | #### 6.1.2. [Pt Adatoms Island on MoS2](defect-point-adatom-island-molybdenum-disulfide-platinum.md)
|
199 |
| -Saidi, W. A. |
200 |
| -"Density Functional Theory Study of Nucleation and Growth of Pt Nanoparticles on MoS2(001) Surface" |
201 |
| -Crystal Growth & Design, 15(2), 642–652. (2015) |
| 145 | +[DOI: 10.1021/cg5013395](https://doi.org/10.1021/cg5013395){:target='_blank'}. [@Saidi2015; @Jiao2016; @Fichthorn2000; @Neugebauer1993; @Hortamani2007] |
| 146 | + |
| 147 | +{ style="max-height:500px;width:auto;" } |
| 148 | + |
202 | 149 |
|
203 |
| -[DOI: 10.1021/cg5013395](https://doi.org/10.1021/cg5013395){:target='_blank'}. [@Saidi2015; @Jiao2016; @Fichthorn2000; @Neugebauer1993; @Hortamani2007] |
| 150 | +## References |
0 commit comments