|
| 1 | +{ |
| 2 | + "descriptionLinks": [ |
| 3 | + "Using Jupyter notebooks for data analysis: https://docs.mat3ra.com/jupyterlite/accessing-jupyterlite/" |
| 4 | + ], |
| 5 | + "description": "We present how we can use Jupyter notebooks in Mat3ra platform for data analysis.", |
| 6 | + "tags": [ |
| 7 | + { |
| 8 | + "...": "../metadata/general.json#/tags" |
| 9 | + }, |
| 10 | + "Jupyter", |
| 11 | + "Python" |
| 12 | + ], |
| 13 | + "title": "Mat3ra Tutorial: Using Jupyter notebooks for data analysis", |
| 14 | + "youTubeCaptions": [ |
| 15 | + { |
| 16 | + "text": "Hi, <break time='0.5'/> in this short tutorial, we are going to present how we can use jupyter notebooks in matera platform for data analysis.", |
| 17 | + "startTime": "00:00:00.500", |
| 18 | + "endTime": "00:00:08.000" |
| 19 | + }, |
| 20 | + { |
| 21 | + "text": "It's a great option for those who are familiar with Python.", |
| 22 | + "startTime": "00:00:08.500", |
| 23 | + "endTime": "00:00:12.000" |
| 24 | + }, |
| 25 | + { |
| 26 | + "text": "Here we will specifically focus on how it can help us simplify the process of analyzing data obtained from DFT simulation..", |
| 27 | + "startTime": "00:00:13.000", |
| 28 | + "endTime": "00:00:22.000" |
| 29 | + }, |
| 30 | + { |
| 31 | + "text": "Let's head over to our platform. Use a web browser and visit platform dot matera dot com.", |
| 32 | + "startTime": "00:00:23.000", |
| 33 | + "endTime": "00:00:29.000" |
| 34 | + }, |
| 35 | + { |
| 36 | + "text": "We are going to create a DFT workflow to calculate bandstructure of silicon using quantum espresso.", |
| 37 | + "startTime": "00:00:30.000", |
| 38 | + "endTime": "00:00:36.000" |
| 39 | + }, |
| 40 | + { |
| 41 | + "text": "This calculation has three steps, <break time='1.0'/> first we perform self consistent field calculation.", |
| 42 | + "startTime": "00:00:37.000", |
| 43 | + "endTime": "00:00:43.000" |
| 44 | + }, |
| 45 | + { |
| 46 | + "text": "Then we add a unit for bands calculation.", |
| 47 | + "startTime": "00:00:44.000", |
| 48 | + "endTime": "00:00:47.000" |
| 49 | + }, |
| 50 | + { |
| 51 | + "text": "Finally, we add unit for postprocessing of bands using bands dot X.", |
| 52 | + "startTime": "00:00:52.000", |
| 53 | + "endTime": "00:00:55.000" |
| 54 | + }, |
| 55 | + { |
| 56 | + "text": "Save and exit workflow. <break time='0.5'/> Create a job with the workflow we have just created.", |
| 57 | + "startTime": "00:00:58.000", |
| 58 | + "endTime": "00:01:04.000" |
| 59 | + }, |
| 60 | + { |
| 61 | + "text": "Submit job for execution.", |
| 62 | + "startTime": "00:01:20.000", |
| 63 | + "endTime": "00:01:21.000" |
| 64 | + }, |
| 65 | + { |
| 66 | + "text": "Once the job is finished, we can see the summary of various results.", |
| 67 | + "startTime": "00:01:25.000", |
| 68 | + "endTime": "00:01:29.000" |
| 69 | + }, |
| 70 | + { |
| 71 | + "text": "Navigate to the files tab, and we will see all the output files are listed here.", |
| 72 | + "startTime": "00:01:34.000", |
| 73 | + "endTime": "00:01:39.000" |
| 74 | + }, |
| 75 | + { |
| 76 | + "text": "Now, we would like to do the post-processing of these output files using Python Jupyter notebook.", |
| 77 | + "startTime": "00:01:40.000", |
| 78 | + "endTime": "00:01:45.000" |
| 79 | + }, |
| 80 | + { |
| 81 | + "text": "There are a couple of different ways to run Jupyter notebook in our platform.", |
| 82 | + "startTime": "00:01:46.000", |
| 83 | + "endTime": "00:01:50.000" |
| 84 | + }, |
| 85 | + { |
| 86 | + "text": "Perhaps, the quickest way to launch Jupyter lite. Click the console icon on the top right and select Jupyter lite.", |
| 87 | + "startTime": "00:01:51.000", |
| 88 | + "endTime": "00:01:57.000" |
| 89 | + }, |
| 90 | + { |
| 91 | + "text": "Let's create a new notebook, <break time='2.0'/> and rename the notebook to bands analysis.", |
| 92 | + "startTime": "00:02:01.000", |
| 93 | + "endTime": "00:02:06.000" |
| 94 | + }, |
| 95 | + { |
| 96 | + "text": "Let's also open an example notebook.", |
| 97 | + "startTime": "00:02:10.000", |
| 98 | + "endTime": "00:02:13.000" |
| 99 | + }, |
| 100 | + { |
| 101 | + "text": "Here we will see that it is entirely possible to perform all the steps from a Jupyter notebook.", |
| 102 | + "startTime": "00:02:16.000", |
| 103 | + "endTime": "00:02:22.000" |
| 104 | + }, |
| 105 | + { |
| 106 | + "text": "Including authentication, <break time='0.25'/> workflow creation, <break time='0.25'/> job submission, <break time='0.25'/> job monitoring and <break time='0.25'/> fetch results.", |
| 107 | + "startTime": "00:02:22.500", |
| 108 | + "endTime": "00:02:29.000" |
| 109 | + }, |
| 110 | + { |
| 111 | + "text": "Now, let's copy the authentication part and run inside our bands analysis notebook.", |
| 112 | + "startTime": "00:02:30.000", |
| 113 | + "endTime": "00:02:35.000" |
| 114 | + }, |
| 115 | + { |
| 116 | + "text": "It will generate API keys and authenticate user seamlessly.", |
| 117 | + "startTime": "00:02:36.000", |
| 118 | + "endTime": "00:02:39.000" |
| 119 | + }, |
| 120 | + { |
| 121 | + "text": "It will also install a list of default packages.", |
| 122 | + "startTime": "00:02:40.000", |
| 123 | + "endTime": "00:02:43.000" |
| 124 | + }, |
| 125 | + { |
| 126 | + "text": "Next we initialize the jobs endpoint.", |
| 127 | + "startTime": "00:02:45.000", |
| 128 | + "endTime": "00:02:47.000" |
| 129 | + }, |
| 130 | + { |
| 131 | + "text": "Then we would like to fetch the output file.", |
| 132 | + "startTime": "00:02:48.000", |
| 133 | + "endTime": "00:02:50.000" |
| 134 | + }, |
| 135 | + { |
| 136 | + "text": "For this we need the job ID.", |
| 137 | + "startTime": "00:02:55.000", |
| 138 | + "endTime": "00:02:57.000" |
| 139 | + }, |
| 140 | + { |
| 141 | + "text": "Let's go back to job page.", |
| 142 | + "startTime": "00:02:58.000", |
| 143 | + "endTime": "00:03:00.000" |
| 144 | + }, |
| 145 | + { |
| 146 | + "text": "And copy the job ID.", |
| 147 | + "startTime": "00:03:02.000", |
| 148 | + "endTime": "00:03:04.000" |
| 149 | + }, |
| 150 | + { |
| 151 | + "text": "We would like to fetch the bands dot dat dot GNU file for bandstructure analysis.", |
| 152 | + "startTime": "00:03:06.000", |
| 153 | + "endTime": "00:03:10.000" |
| 154 | + }, |
| 155 | + { |
| 156 | + "text": "Let's save the results in a file named data dot TXT.", |
| 157 | + "startTime": "00:03:12.000", |
| 158 | + "endTime": "00:03:15.000" |
| 159 | + }, |
| 160 | + { |
| 161 | + "text": "Finally, we can use matplotlib to make our bandstructure plot.", |
| 162 | + "startTime": "00:03:17.000", |
| 163 | + "endTime": "00:03:21.000" |
| 164 | + }, |
| 165 | + { |
| 166 | + "text": "This use case is not specific to DFT data analysis. You can use Python notebooks to analyze or postprocess any data in our platform.", |
| 167 | + "startTime": "00:03:22.000", |
| 168 | + "endTime": "00:03:31.000" |
| 169 | + }, |
| 170 | + { |
| 171 | + "text": "Now, I hope you are excited to visit platform dot matera dot com, and give it a try.", |
| 172 | + "startTime": "00:03:32.000", |
| 173 | + "endTime": "00:03:36.000" |
| 174 | + }, |
| 175 | + { |
| 176 | + "text": "Thank you for following this tutorial and using our platform.", |
| 177 | + "startTime": "00:03:37.000", |
| 178 | + "endTime": "00:03:41.000" |
| 179 | + } |
| 180 | + ], |
| 181 | + "youTubeId": "PXosTghiAzs" |
| 182 | +} |
0 commit comments