Skip to content

NonDifferentiableFunction -> NonDifferentiable, DifferentiableFunctio… #355

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Feb 1, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docs/src/algo/precondition.md
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,7 @@ initial_x = zeros(100)
plap(U; n = length(U)) = (n-1)*sum((0.1 + diff(U).^2).^2 ) - sum(U) / (n-1)
plap1 = ForwardDiff.gradient(plap)
precond(n) = spdiagm((-ones(n-1), 2*ones(n), -ones(n-1)), (-1,0,1), n, n)*(n+1)
df = DifferentiableFunction(x -> plap([0; X; 0]),
df = OnceDifferentiable(x -> plap([0; X; 0]),
(x, g) -> copy!(g, (plap1([0; X; 0]))[2:end-1]))
result = Optim.optimize(df, initial_x, method = ConjugateGradient(P = nothing))
result = Optim.optimize(df, initial_x, method = ConjugateGradient(P = precond(100)))
Expand Down
6 changes: 3 additions & 3 deletions docs/src/user/minimization.md
Original file line number Diff line number Diff line change
Expand Up @@ -75,7 +75,7 @@ A primal interior-point algorithm for simple "box" constraints (lower and upper
lower = [1.25, -2.1]
upper = [Inf, Inf]
initial_x = [2.0, 2.0]
results = optimize(DifferentiableFunction(f, g!), initial_x, lower, upper, Fminbox(), optimizer = GradientDescent)
results = optimize(OnceDifferentiable(f, g!), initial_x, lower, upper, Fminbox(), optimizer = GradientDescent)
```

This performs optimization with a barrier penalty, successively scaling down the barrier coefficient and using the chosen `optimizer` for convergence at each step. Notice that the `Optimizer` type, not an instance should be passed. This means that the keyword should be passed as `optimizer = GradientDescent` not `optimizer = GradientDescent()`, as you usually would.
Expand All @@ -86,11 +86,11 @@ There are two iterations parameters: an outer iterations parameter used to contr

For example, the following restricts the optimization to 2 major iterations
```julia
results = optimize(DifferentiableFunction(f, g!), initial_x, lower, upper, Fminbox(); optimizer = GradientDescent, iterations = 2)
results = optimize(OnceDifferentiable(f, g!), initial_x, lower, upper, Fminbox(); optimizer = GradientDescent, iterations = 2)
```
In contrast, the following sets the maximum number of iterations for each `ConjugateGradient` optimization to 2
```julia
results = Optim.optimize(DifferentiableFunction(f, g!), initial_x, lower, upper, Fminbox(); optimizer = GradientDescent, optimizer_o = Optim.Options(iterations = 2))
results = Optim.optimize(OnceDifferentiable(f, g!), initial_x, lower, upper, Fminbox(); optimizer = GradientDescent, optimizer_o = Optim.Options(iterations = 2))
```
## Minimizing a univariate function on a bounded interval

Expand Down
2 changes: 1 addition & 1 deletion docs/src/user/tipsandtricks.md
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,7 @@ using Optim
initial_x = ...
buffer = Array{eltype(initial_x)}(...) # Preallocate an appropriate buffer
last_x = similar(initial_x)
df = TwiceDifferentiableFunction(x -> f(x, buffer, initial_x),
df = TwiceDifferentiable(x -> f(x, buffer, initial_x),
(x, stor) -> g!(x, stor, buffer, last_x))
optimize(df, initial_x)
```
Expand Down
6 changes: 5 additions & 1 deletion src/Optim.jl
Original file line number Diff line number Diff line change
Expand Up @@ -17,8 +17,12 @@ module Optim
Base.setindex!

export optimize,
DifferentiableFunction,
NonDifferentiableFunction,
OnceDifferentiableFunction,
TwiceDifferentiableFunction,
NonDifferentiable,
OnceDifferentiable,
TwiceDifferentiable,
OptimizationOptions,
OptimizationState,
OptimizationTrace,
Expand Down
4 changes: 4 additions & 0 deletions src/deprecate.jl
Original file line number Diff line number Diff line change
Expand Up @@ -73,3 +73,7 @@ function get_neighbor(neighbor!, neighbor)
end
neighbor
end

@deprecate NonDifferentiableFunction(args...) NonDifferentiable(args)
@deprecate DifferentiableFunction(args...) OnceDifferentiable(args)
@deprecate TwiceDifferentiableFunction(args...) TwiceDifferentiable(args)
4 changes: 2 additions & 2 deletions src/fminbox.jl
Original file line number Diff line number Diff line change
Expand Up @@ -103,7 +103,7 @@ end
immutable Fminbox <: Optimizer end

function optimize{T<:AbstractFloat}(
df::DifferentiableFunction,
df::OnceDifferentiable,
initial_x::Array{T},
l::Array{T},
u::Array{T},
Expand Down Expand Up @@ -183,7 +183,7 @@ function optimize{T<:AbstractFloat}(
# Optimize with current setting of mu
funcc = (x, g) -> barrier_combined(x, g, gfunc, gbarrier, fb, mu)
fval0 = funcc(x, nothing)
dfbox = DifferentiableFunction(x->funcc(x,nothing), (x,g)->(funcc(x,g); g), funcc)
dfbox = OnceDifferentiable(x->funcc(x,nothing), (x,g)->(funcc(x,g); g), funcc)
if show_trace > 0
println("#### Calling optimizer with mu = ", mu, " ####")
end
Expand Down
30 changes: 15 additions & 15 deletions src/optimize.jl
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ function optimize{F<:Function, G<:Function}(f::F, g!::G, initial_x::Array; kwarg
checked_kwargs, method = check_kwargs(kwargs, BFGS())
optimize(f, g!, initial_x, method, Options(;checked_kwargs...))
end
function optimize(d::DifferentiableFunction, initial_x::Array; kwargs...)
function optimize(d::OnceDifferentiable, initial_x::Array; kwargs...)
checked_kwargs, method = check_kwargs(kwargs, BFGS())
optimize(d, initial_x, method, Options(checked_kwargs...))
end
Expand All @@ -41,28 +41,28 @@ function optimize{F<:Function, G<:Function, H<:Function}(f::F,
optimize(f, g!, h!, initial_x, method, Options(checked_kwargs...))
end

function optimize(d::TwiceDifferentiableFunction, initial_x::Array; kwargs...)
function optimize(d::TwiceDifferentiable, initial_x::Array; kwargs...)
checked_kwargs, method = check_kwargs(kwargs, Newton())
optimize(d, initial_x, method, Options(;kwargs...))
end

optimize(d::Function, initial_x, options::Options) = optimize(d, initial_x, NelderMead(), options)
optimize(d::DifferentiableFunction, initial_x, options::Options) = optimize(d, initial_x, BFGS(), options)
optimize(d::TwiceDifferentiableFunction, initial_x, options::Options) = optimize(d, initial_x, Newton(), options)
optimize(d::OnceDifferentiable, initial_x, options::Options) = optimize(d, initial_x, BFGS(), options)
optimize(d::TwiceDifferentiable, initial_x, options::Options) = optimize(d, initial_x, Newton(), options)

function optimize{F<:Function, G<:Function}(f::F,
g!::G,
initial_x::Array,
method::Optimizer,
options::Options = Options())
d = DifferentiableFunction(f, g!)
d = OnceDifferentiable(f, g!)
optimize(d, initial_x, method, options)
end
function optimize{F<:Function, G<:Function}(f::F,
g!::G,
initial_x::Array,
options::Options)
d = DifferentiableFunction(f, g!)
d = OnceDifferentiable(f, g!)
optimize(d, initial_x, BFGS(), options)
end

Expand All @@ -72,15 +72,15 @@ function optimize{F<:Function, G<:Function, H<:Function}(f::F,
initial_x::Array,
method::Optimizer,
options::Options = Options())
d = TwiceDifferentiableFunction(f, g!, h!)
d = TwiceDifferentiable(f, g!, h!)
optimize(d, initial_x, method, options)
end
function optimize{F<:Function, G<:Function, H<:Function}(f::F,
g!::G,
h!::H,
initial_x::Array,
options)
d = TwiceDifferentiableFunction(f, g!, h!)
d = TwiceDifferentiable(f, g!, h!)
optimize(d, initial_x, Newton(), options)
end

Expand All @@ -90,7 +90,7 @@ function optimize{F<:Function, T, M <: Union{FirstOrderSolver, SecondOrderSolver
options::Options)
if !options.autodiff
if M <: FirstOrderSolver
d = DifferentiableFunction(f)
d = OnceDifferentiable(f)
else
error("No gradient or Hessian was provided. Either provide a gradient and Hessian, set autodiff = true in the Options if applicable, or choose a solver that doesn't require a Hessian.")
end
Expand All @@ -105,18 +105,18 @@ function optimize{F<:Function, T, M <: Union{FirstOrderSolver, SecondOrderSolver
end

if M <: FirstOrderSolver
d = DifferentiableFunction(f, g!, fg!)
d = OnceDifferentiable(f, g!, fg!)
else
hcfg = ForwardDiff.HessianConfig(initial_x)
h! = (x, out) -> ForwardDiff.hessian!(out, f, x, hcfg)
d = TwiceDifferentiableFunction(f, g!, fg!, h!)
d = TwiceDifferentiable(f, g!, fg!, h!)
end
end

optimize(d, initial_x, method, options)
end

function optimize(d::DifferentiableFunction,
function optimize(d::OnceDifferentiable,
initial_x::Array,
method::Newton,
options::Options)
Expand All @@ -126,10 +126,10 @@ function optimize(d::DifferentiableFunction,
hcfg = ForwardDiff.HessianConfig(initial_x)
h! = (x, out) -> ForwardDiff.hessian!(out, d.f, x, hcfg)
end
optimize(TwiceDifferentiableFunction(d.f, d.g!, d.fg!, h!), initial_x, method, options)
optimize(TwiceDifferentiable(d.f, d.g!, d.fg!, h!), initial_x, method, options)
end

function optimize(d::DifferentiableFunction,
function optimize(d::OnceDifferentiable,
initial_x::Array,
method::NewtonTrustRegion,
options::Options)
Expand All @@ -139,7 +139,7 @@ function optimize(d::DifferentiableFunction,
hcfg = ForwardDiff.HessianConfig(initial_x)
h! = (x, out) -> ForwardDiff.hessian!(out, d.f, x, hcfg)
end
optimize(TwiceDifferentiableFunction(d.f, d.g!, d.fg!, h!), initial_x, method, options)
optimize(TwiceDifferentiable(d.f, d.g!, d.fg!, h!), initial_x, method, options)
end

update_g!(d, state, method) = nothing
Expand Down
22 changes: 11 additions & 11 deletions src/types.jl
Original file line number Diff line number Diff line change
Expand Up @@ -93,17 +93,17 @@ type UnivariateOptimizationResults{T,M} <: OptimizationResults
f_calls::Int
end

immutable NonDifferentiableFunction
immutable NonDifferentiable
f::Function
end

immutable DifferentiableFunction
immutable OnceDifferentiable
f::Function
g!::Function
fg!::Function
end

immutable TwiceDifferentiableFunction
immutable TwiceDifferentiable
f::Function
g!::Function
fg!::Function
Expand Down Expand Up @@ -187,7 +187,7 @@ function Base.append!(a::MultivariateOptimizationResults, b::MultivariateOptimiz
end

# TODO: Expose ability to do forward and backward differencing
function DifferentiableFunction(f::Function)
function OnceDifferentiable(f::Function)
function g!(x::Array, storage::Array)
Calculus.finite_difference!(f, x, storage, :central)
return
Expand All @@ -196,18 +196,18 @@ function DifferentiableFunction(f::Function)
g!(x, storage)
return f(x)
end
return DifferentiableFunction(f, g!, fg!)
return OnceDifferentiable(f, g!, fg!)
end

function DifferentiableFunction(f::Function, g!::Function)
function OnceDifferentiable(f::Function, g!::Function)
function fg!(x::Array, storage::Array)
g!(x, storage)
return f(x)
end
return DifferentiableFunction(f, g!, fg!)
return OnceDifferentiable(f, g!, fg!)
end

function TwiceDifferentiableFunction(f::Function)
function TwiceDifferentiable(f::Function)
function g!(x::Vector, storage::Vector)
Calculus.finite_difference!(f, x, storage, :central)
return
Expand All @@ -220,15 +220,15 @@ function TwiceDifferentiableFunction(f::Function)
Calculus.finite_difference_hessian!(f, x, storage)
return
end
return TwiceDifferentiableFunction(f, g!, fg!, h!)
return TwiceDifferentiable(f, g!, fg!, h!)
end

function TwiceDifferentiableFunction(f::Function,
function TwiceDifferentiable(f::Function,
g!::Function,
h!::Function)
function fg!(x::Vector, storage::Vector)
g!(x, storage)
return f(x)
end
return TwiceDifferentiableFunction(f, g!, fg!, h!)
return TwiceDifferentiable(f, g!, fg!, h!)
end
2 changes: 1 addition & 1 deletion test/accelerated_gradient_descent.jl
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
return
end

d = DifferentiableFunction(f, g!)
d = OnceDifferentiable(f, g!)

initial_x = [1.0]
options = Optim.Options(show_trace = true, iterations = 10)
Expand Down
6 changes: 3 additions & 3 deletions test/api.jl
Original file line number Diff line number Diff line change
Expand Up @@ -6,9 +6,9 @@
h! = rosenbrock.h!
initial_x = rosenbrock.initial_x

d1 = DifferentiableFunction(f)
d2 = DifferentiableFunction(f, g!)
d3 = TwiceDifferentiableFunction(f, g!, h!)
d1 = OnceDifferentiable(f)
d2 = OnceDifferentiable(f, g!)
d3 = TwiceDifferentiable(f, g!, h!)

Optim.optimize(f, initial_x, BFGS())
Optim.optimize(f, g!, initial_x, BFGS())
Expand Down
4 changes: 2 additions & 2 deletions test/callbacks.jl
Original file line number Diff line number Diff line change
Expand Up @@ -5,8 +5,8 @@
g! = problem.g!
h! = problem.h!
initial_x = problem.initial_x
d2 = DifferentiableFunction(f, g!)
d3 = TwiceDifferentiableFunction(f, g!, h!)
d2 = OnceDifferentiable(f, g!)
d3 = TwiceDifferentiable(f, g!, h!)

for method in (NelderMead(), SimulatedAnnealing())
ot_run = false
Expand Down
4 changes: 2 additions & 2 deletions test/cg.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
# Test Optim.cg for all differentiable functions in Optim.UnconstrainedProblems.examples
for (name, prob) in Optim.UnconstrainedProblems.examples
if prob.isdifferentiable
df = DifferentiableFunction(prob.f, prob.g!)
df = OnceDifferentiable(prob.f, prob.g!)
res = Optim.optimize(df, prob.initial_x, ConjugateGradient())
@test norm(Optim.minimizer(res) - prob.solutions) < 1e-2
end
Expand All @@ -19,7 +19,7 @@

srand(1)
B = rand(2,2)
df = Optim.DifferentiableFunction(X -> objective(X, B), (X, G) -> objective_gradient!(X, G, B))
df = Optim.OnceDifferentiable(X -> objective(X, B), (X, G) -> objective_gradient!(X, G, B))
results = Optim.optimize(df, rand(2,2), ConjugateGradient())
@test Optim.converged(results)
@test Optim.minimum(results) < 1e-8
Expand Down
2 changes: 1 addition & 1 deletion test/constrained.jl
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@
initial_x = randn(N)
tmp = similar(initial_x)
func = (x, g) -> quadratic!(x, g, AtA, A'*b, tmp)
objective = Optim.DifferentiableFunction(x->func(x, nothing), (x,g)->func(x,g), func)
objective = Optim.OnceDifferentiable(x->func(x, nothing), (x,g)->func(x,g), func)
results = Optim.optimize(objective, initial_x, ConjugateGradient())
results = Optim.optimize(objective, Optim.minimizer(results), ConjugateGradient()) # restart to ensure high-precision convergence
@test Optim.converged(results)
Expand Down
2 changes: 1 addition & 1 deletion test/extrapolate.jl
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ import LineSearches
precond(x::Vector) = precond(length(x))
precond(n::Number) = spdiagm(( -ones(n-1), 2*ones(n), -ones(n-1) ),
(-1,0,1), n, n) * (n+1)
df = DifferentiableFunction( X->plap([0;X;0]),
df = OnceDifferentiable( X->plap([0;X;0]),
(X, G)->copy!(G, (plap1([0;X;0]))[2:end-1]) )
GRTOL = 1e-6
N = 100
Expand Down
4 changes: 2 additions & 2 deletions test/gradient_descent.jl
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@

initial_x = [0.0]

d = DifferentiableFunction(f_gd_1, g_gd_1)
d = OnceDifferentiable(f_gd_1, g_gd_1)

results = Optim.optimize(d, initial_x, GradientDescent())
@test_throws ErrorException Optim.x_trace(results)
Expand All @@ -46,7 +46,7 @@
storage[2] = eta * x[2]
end

d = DifferentiableFunction(f_gd_2, g_gd_2)
d = OnceDifferentiable(f_gd_2, g_gd_2)

results = Optim.optimize(d, [1.0, 1.0], GradientDescent())
@test_throws ErrorException Optim.x_trace(results)
Expand Down
Loading