Skip to content

文档内容勘误 #2628

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Mar 2, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ tag:

### 所有表必须使用 InnoDB 存储引擎

没有特殊要求(即 InnoDB 无法满足的功能如:列存储存储空间数据等)的情况下,所有表必须使用 InnoDB 存储引擎(MySQL5.5 之前默认使用 MyISAM,5.6 以后默认的为 InnoDB)。
没有特殊要求(即 InnoDB 无法满足的功能如:列存储存储空间数据等)的情况下,所有表必须使用 InnoDB 存储引擎(MySQL5.5 之前默认使用 MyISAM,5.6 以后默认的为 InnoDB)。

InnoDB 支持事务,支持行级锁,更好的恢复性,高并发下性能更好。

Expand Down Expand Up @@ -198,9 +198,9 @@ InnoDB 是按照主键索引的顺序来组织表的。

建立索引的目的是:希望通过索引进行数据查找,减少随机 IO,增加查询性能,索引能过滤出越少的数据,则从磁盘中读入的数据也就越少。

- **区分度最高的列放在联合索引的最左侧:** 这是最重要的原则。区分度越高,通过索引筛选出的数据就越少,I/O 操作也就越少。计算区分度的方法是 `count(distinct column) / count(*)`。
- **最频繁使用的列放在联合索引的左侧:** 这符合最左前缀匹配原则。将最常用的查询条件列放在最左侧,可以最大程度地利用索引。
- **字段长度:** 字段长度对联合索引非叶子节点的影响很小,因为它存储了所有联合索引字段的值。字段长度主要影响主键和包含在其他索引中的字段的存储空间,以及这些索引的叶子节点的大小。因此,在选择联合索引列的顺序时,字段长度的优先级最低。对于主键和包含在其他索引中的字段,选择较短的字段长度可以节省存储空间和提高 I/O 性能。
- **区分度最高的列放在联合索引的最左侧**:这是最重要的原则。区分度越高,通过索引筛选出的数据就越少,I/O 操作也就越少。计算区分度的方法是 `count(distinct column) / count(*)`。
- **最频繁使用的列放在联合索引的左侧**:这符合最左前缀匹配原则。将最常用的查询条件列放在最左侧,可以最大程度地利用索引。
- **字段长度**:字段长度对联合索引非叶子节点的影响很小,因为它存储了所有联合索引字段的值。字段长度主要影响主键和包含在其他索引中的字段的存储空间,以及这些索引的叶子节点的大小。因此,在选择联合索引列的顺序时,字段长度的优先级最低。对于主键和包含在其他索引中的字段,选择较短的字段长度可以节省存储空间和提高 I/O 性能。

### 避免建立冗余索引和重复索引(增加了查询优化器生成执行计划的时间)

Expand All @@ -211,10 +211,10 @@ InnoDB 是按照主键索引的顺序来组织表的。

> 覆盖索引:就是包含了所有查询字段 (where、select、order by、group by 包含的字段) 的索引

**覆盖索引的好处:**
**覆盖索引的好处**:

- **避免 InnoDB 表进行索引的二次查询,也就是回表操作:** InnoDB 是以聚集索引的顺序来存储的,对于 InnoDB 来说,二级索引在叶子节点中所保存的是行的主键信息,如果是用二级索引查询数据的话,在查找到相应的键值后,还要通过主键进行二次查询才能获取我们真实所需要的数据。而在覆盖索引中,二级索引的键值中可以获取所有的数据,避免了对主键的二次查询(回表),减少了 IO 操作,提升了查询效率。
- **可以把随机 IO 变成顺序 IO 加快查询效率:** 由于覆盖索引是按键值的顺序存储的,对于 IO 密集型的范围查找来说,对比随机从磁盘读取每一行的数据 IO 要少的多,因此利用覆盖索引在访问时也可以把磁盘的随机读取的 IO 转变成索引查找的顺序 IO。
- **避免 InnoDB 表进行索引的二次查询,也就是回表操作**:InnoDB 是以聚集索引的顺序来存储的,对于 InnoDB 来说,二级索引在叶子节点中所保存的是行的主键信息,如果是用二级索引查询数据的话,在查找到相应的键值后,还要通过主键进行二次查询才能获取我们真实所需要的数据。而在覆盖索引中,二级索引的键值中可以获取所有的数据,避免了对主键的二次查询(回表),减少了 IO 操作,提升了查询效率。
- **可以把随机 IO 变成顺序 IO 加快查询效率**:由于覆盖索引是按键值的顺序存储的,对于 IO 密集型的范围查找来说,对比随机从磁盘读取每一行的数据 IO 要少的多,因此利用覆盖索引在访问时也可以把磁盘的随机读取的 IO 转变成索引查找的顺序 IO。

---

Expand Down Expand Up @@ -253,13 +253,13 @@ InnoDB 是按照主键索引的顺序来组织表的。

### 禁止使用不含字段列表的 INSERT 语句

**不推荐:**
**不推荐**:

```sql
insert into t values ('a','b','c');
```

**推荐:**
**推荐**:

```sql
insert into t(c1,c2,c3) values ('a','b','c');
Expand All @@ -285,7 +285,7 @@ select name,phone from customer where id = '111';

通常子查询在 in 子句中,且子查询中为简单 SQL(不包含 union、group by、order by、limit 从句) 时,才可以把子查询转化为关联查询进行优化。

**子查询性能差的原因:** 子查询的结果集无法使用索引,通常子查询的结果集会被存储到临时表中,不论是内存临时表还是磁盘临时表都不会存在索引,所以查询性能会受到一定的影响。特别是对于返回结果集比较大的子查询,其对查询性能的影响也就越大。由于子查询会产生大量的临时表也没有索引,所以会消耗过多的 CPU 和 IO 资源,产生大量的慢查询。
**子查询性能差的原因**:子查询的结果集无法使用索引,通常子查询的结果集会被存储到临时表中,不论是内存临时表还是磁盘临时表都不会存在索引,所以查询性能会受到一定的影响。特别是对于返回结果集比较大的子查询,其对查询性能的影响也就越大。由于子查询会产生大量的临时表也没有索引,所以会消耗过多的 CPU 和 IO 资源,产生大量的慢查询。

### 避免使用 JOIN 关联太多的表

Expand Down Expand Up @@ -315,13 +315,13 @@ order by rand() 会把表中所有符合条件的数据装载到内存中,然

对列进行函数转换或计算时会导致无法使用索引。

**不推荐:**
**不推荐**:

```sql
where date(create_time)='20190101'
```

**推荐:**
**推荐**:

```sql
where create_time >= '20190101' and create_time < '20190102'
Expand Down
44 changes: 22 additions & 22 deletions docs/database/mysql/mysql-index.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,12 +21,12 @@ tag:

## 索引的优缺点

**优点:**
**优点**:

- 使用索引可以大大加快数据的检索速度(大大减少检索的数据量),减少 IO 次数,这也是创建索引的最主要的原因。
- 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。

**缺点:**
**缺点**:

- 创建和维护索引需要耗费许多时间。当对表中的数据进行增删改的时候,如果数据有索引,那么索引也需要动态地修改,这会降低 SQL 执行效率。
- 索引需要使用物理文件存储,也会耗费一定空间。
Expand Down Expand Up @@ -181,10 +181,10 @@ MySQL 8.x 中实现的索引新特性:

PS:不懂的同学可以暂存疑,慢慢往下看,后面会有答案的,也可以自行搜索。

1. **唯一索引(Unique Key):** 唯一索引也是一种约束。唯一索引的属性列不能出现重复的数据,但是允许数据为 NULL,一张表允许创建多个唯一索引。 建立唯一索引的目的大部分时候都是为了该属性列的数据的唯一性,而不是为了查询效率。
2. **普通索引(Index):** 普通索引的唯一作用就是为了快速查询数据。一张表允许创建多个普通索引,并允许数据重复和 NULL。
3. **前缀索引(Prefix):** 前缀索引只适用于字符串类型的数据。前缀索引是对文本的前几个字符创建索引,相比普通索引建立的数据更小,因为只取前几个字符。
4. **全文索引(Full Text):** 全文索引主要是为了检索大文本数据中的关键字的信息,是目前搜索引擎数据库使用的一种技术。Mysql5.6 之前只有 MyISAM 引擎支持全文索引,5.6 之后 InnoDB 也支持了全文索引。
1. **唯一索引(Unique Key)**:唯一索引也是一种约束。唯一索引的属性列不能出现重复的数据,但是允许数据为 NULL,一张表允许创建多个唯一索引。 建立唯一索引的目的大部分时候都是为了该属性列的数据的唯一性,而不是为了查询效率。
2. **普通索引(Index)**:普通索引的唯一作用就是为了快速查询数据。一张表允许创建多个普通索引,并允许数据重复和 NULL。
3. **前缀索引(Prefix)**:前缀索引只适用于字符串类型的数据。前缀索引是对文本的前几个字符创建索引,相比普通索引建立的数据更小,因为只取前几个字符。
4. **全文索引(Full Text)**:全文索引主要是为了检索大文本数据中的关键字的信息,是目前搜索引擎数据库使用的一种技术。Mysql5.6 之前只有 MyISAM 引擎支持全文索引,5.6 之后 InnoDB 也支持了全文索引。

二级索引:

Expand All @@ -202,15 +202,15 @@ PS:不懂的同学可以暂存疑,慢慢往下看,后面会有答案的,

#### 聚簇索引的优缺点

**优点:**
**优点**:

- **查询速度非常快:** 聚簇索引的查询速度非常的快,因为整个 B+ 树本身就是一颗多叉平衡树,叶子节点也都是有序的,定位到索引的节点,就相当于定位到了数据。相比于非聚簇索引, 聚簇索引少了一次读取数据的 IO 操作。
- **对排序查找和范围查找优化:** 聚簇索引对于主键的排序查找和范围查找速度非常快。
- **查询速度非常快**:聚簇索引的查询速度非常的快,因为整个 B+ 树本身就是一颗多叉平衡树,叶子节点也都是有序的,定位到索引的节点,就相当于定位到了数据。相比于非聚簇索引, 聚簇索引少了一次读取数据的 IO 操作。
- **对排序查找和范围查找优化**:聚簇索引对于主键的排序查找和范围查找速度非常快。

**缺点:**
**缺点**:

- **依赖于有序的数据:** 因为 B+ 树是多路平衡树,如果索引的数据不是有序的,那么就需要在插入时排序,如果数据是整型还好,否则类似于字符串或 UUID 这种又长又难比较的数据,插入或查找的速度肯定比较慢。
- **更新代价大:** 如果对索引列的数据被修改时,那么对应的索引也将会被修改,而且聚簇索引的叶子节点还存放着数据,修改代价肯定是较大的,所以对于主键索引来说,主键一般都是不可被修改的。
- **依赖于有序的数据**:因为 B+ 树是多路平衡树,如果索引的数据不是有序的,那么就需要在插入时排序,如果数据是整型还好,否则类似于字符串或 UUID 这种又长又难比较的数据,插入或查找的速度肯定比较慢。
- **更新代价大**:如果对索引列的数据被修改时,那么对应的索引也将会被修改,而且聚簇索引的叶子节点还存放着数据,修改代价肯定是较大的,所以对于主键索引来说,主键一般都是不可被修改的。

### 非聚簇索引(非聚集索引)

Expand All @@ -222,14 +222,14 @@ PS:不懂的同学可以暂存疑,慢慢往下看,后面会有答案的,

#### 非聚簇索引的优缺点

**优点:**
**优点**:

更新代价比聚簇索引要小。非聚簇索引的更新代价就没有聚簇索引那么大了,非聚簇索引的叶子节点是不存放数据的。

**缺点:**
**缺点**:

- **依赖于有序的数据:** 跟聚簇索引一样,非聚簇索引也依赖于有序的数据。
- **可能会二次查询(回表):** 这应该是非聚簇索引最大的缺点了。当查到索引对应的指针或主键后,可能还需要根据指针或主键再到数据文件或表中查询。
- **依赖于有序的数据**:跟聚簇索引一样,非聚簇索引也依赖于有序的数据。
- **可能会二次查询(回表)**:这应该是非聚簇索引最大的缺点了。当查到索引对应的指针或主键后,可能还需要根据指针或主键再到数据文件或表中查询。

这是 MySQL 的表的文件截图:

Expand Down Expand Up @@ -391,7 +391,7 @@ SELECT * FROM student WHERE class = 'lIrm08RYVk';
先不要往下看答案,给自己 3 分钟时间想一想。

1. 查询 `a=1 AND c=1`:根据最左前缀匹配原则,查询可以使用索引的前缀部分。因此,该查询仅在 `a=1` 上使用索引,然后对结果进行 `c=1` 的过滤。
2. 查询 `c=1` :由于查询中不包含最左列 `a`,根据最左前缀匹配原则,整个索引都无法被使用。
2. 查询 `c=1`:由于查询中不包含最左列 `a`,根据最左前缀匹配原则,整个索引都无法被使用。
3. 查询 `b=1 AND c=1`:和第二种一样的情况,整个索引都不会使用。

MySQL 8.0.13 版本引入了索引跳跃扫描(Index Skip Scan,简称 ISS),它可以在某些索引查询场景下提高查询效率。在没有 ISS 之前,不满足最左前缀匹配原则的联合索引查询中会执行全表扫描。而 ISS 允许 MySQL 在某些情况下避免全表扫描,即使查询条件不符合最左前缀。不过,这个功能比较鸡肋, 和 Oracle 中的没法比,MySQL 8.0.31 还报告了一个 bug:[Bug #109145 Using index for skip scan cause incorrect result](https://bugs.mysql.com/bug.php?id=109145)(后续版本已经修复)。个人建议知道有这个东西就好,不需要深究,实际项目也不一定能用上。
Expand Down Expand Up @@ -458,11 +458,11 @@ MySQL 可以简单分为 Server 层和存储引擎层这两层。Server 层处

### 选择合适的字段创建索引

- **不为 NULL 的字段:** 索引字段的数据应该尽量不为 NULL,因为对于数据为 NULL 的字段,数据库较难优化。如果字段频繁被查询,但又避免不了为 NULL,建议使用 0、1、true、false 这样语义较为清晰的短值或短字符作为替代。
- **被频繁查询的字段:** 我们创建索引的字段应该是查询操作非常频繁的字段。
- **被作为条件查询的字段:** 被作为 WHERE 条件查询的字段,应该被考虑建立索引。
- **频繁需要排序的字段:** 索引已经排序,这样查询可以利用索引的排序,加快排序查询时间。
- **被经常频繁用于连接的字段:** 经常用于连接的字段可能是一些外键列,对于外键列并不一定要建立外键,只是说该列涉及到表与表的关系。对于频繁被连接查询的字段,可以考虑建立索引,提高多表连接查询的效率。
- **不为 NULL 的字段**:索引字段的数据应该尽量不为 NULL,因为对于数据为 NULL 的字段,数据库较难优化。如果字段频繁被查询,但又避免不了为 NULL,建议使用 0、1、true、false 这样语义较为清晰的短值或短字符作为替代。
- **被频繁查询的字段**:我们创建索引的字段应该是查询操作非常频繁的字段。
- **被作为条件查询的字段**:被作为 WHERE 条件查询的字段,应该被考虑建立索引。
- **频繁需要排序的字段**:索引已经排序,这样查询可以利用索引的排序,加快排序查询时间。
- **被经常频繁用于连接的字段**:经常用于连接的字段可能是一些外键列,对于外键列并不一定要建立外键,只是说该列涉及到表与表的关系。对于频繁被连接查询的字段,可以考虑建立索引,提高多表连接查询的效率。

### 被频繁更新的字段应该慎重建立索引

Expand Down
Loading