Agents example list:
-
Simple Ollama Agent The first basic agent that uses Deepseek R1 (8B parameter) model.
-
Finance Agent A simple finance agent using Yahoo Finance tool and Qwen 2.5 (1.5B parameter) model via Ollama.
-
Team of Agents The team of agents uses DuckDuckGo search and Yahoo finance to summarize analyst recommendation and share latest news for a company given its stock ticker symbol.
-
Image Agent The image agent reads an image and uses Llama 3.2 vision model to describe the image.
-
Knowledge Agent (WIP) The knowledge agent reads a PDF using PyPDF and uses ChromaDB (a vector database) to store embeddings (using Ollama embedder) and retrieve knowledge based on user queries.
- Initialize the project
uv init
- Create a Python virtual environment using
uv
uv venv --python=3.13.2
- Install
agno
(previously phi data) andollama
uv add agno
uv add ollama
- Pull Deepseek R1 (8B) and Qwen 2.5 (1.5B) models from Ollama registry
ollama pull deepseek-r1:8b
ollama pull qwen2.5:1.5b
- Run the simple ollama-agent app
uv run ollama-agent.py
- Run the finance-agent app
uv run finance-agent.py
Finance agent works with Search agent to find the analyst recommendation for a company.
uv run agent-teams.py
Reads an image and uses Llama 3.2 vision model to describe the image.
Model used: Llama 3.2 (11B parameter)
Reads a PDF using PyPDF and uses ChromaDB (a vector database) to store embeddings (using Ollama embedder) and retrieve knowledge based on user queries.
Model used: Llama 3.2 (3B parameter)
This repository is licensed under the MIT License.