-
Notifications
You must be signed in to change notification settings - Fork 249
[Add] Properties for DCPOs in Relation.Binary.Properties.Domain
#2734
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
jmougeot
wants to merge
13
commits into
agda:master
Choose a base branch
from
jmougeot:domain_part2
base: master
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
Show all changes
13 commits
Select commit
Hold shift + click to select a range
4486fd0
Definitons of domain theory
jmougeot 8729975
add domain properties
jmougeot 34be6b0
1st review
jmougeot 502e288
whitespaces
jmougeot 63810b7
@ review
jmougeot 87d5f16
remove the file Padrightdraft
jmougeot 9190ba1
merge domain_part1
jmougeot 5a1cafc
waiting for part1 review
jmougeot d4768c4
fix proof
jmougeot e268d4e
refactoring
jmougeot d98f028
fix-whitespace
jmougeot 88d463a
review 2
jmougeot 2199f79
fix-whitespace
jmougeot File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
------------------------------------------------------------------------ | ||
-- The Agda standard library | ||
-- | ||
-- Order-theoretic Domains | ||
------------------------------------------------------------------------ | ||
|
||
{-# OPTIONS --cubical-compatible --safe #-} | ||
|
||
module Relation.Binary.Domain where | ||
|
||
------------------------------------------------------------------------ | ||
-- Re-export various components of the Domain hierarchy | ||
|
||
open import Relation.Binary.Domain.Definitions public | ||
open import Relation.Binary.Domain.Structures public | ||
open import Relation.Binary.Domain.Bundles public |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,63 @@ | ||
------------------------------------------------------------------------ | ||
-- The Agda standard library | ||
-- | ||
-- Bundles for domain theory | ||
------------------------------------------------------------------------ | ||
|
||
{-# OPTIONS --cubical-compatible --safe #-} | ||
|
||
module Relation.Binary.Domain.Bundles where | ||
|
||
open import Level using (Level; _⊔_; suc) | ||
open import Relation.Binary.Bundles using (Poset) | ||
open import Relation.Binary.Domain.Structures | ||
open import Relation.Binary.Domain.Definitions | ||
|
||
private | ||
variable | ||
o ℓ e o' ℓ' e' ℓ₂ : Level | ||
Ix A B : Set o | ||
|
||
------------------------------------------------------------------------ | ||
-- Directed Complete Partial Orders | ||
------------------------------------------------------------------------ | ||
|
||
record DirectedFamily {c ℓ₁ ℓ₂ : Level} {P : Poset c ℓ₁ ℓ₂} {B : Set c} (f : B → Poset.Carrier P) : Set (c ⊔ ℓ₁ ⊔ ℓ₂) where | ||
field | ||
isDirectedFamily : IsDirectedFamily P f | ||
|
||
open IsDirectedFamily isDirectedFamily public | ||
|
||
record DirectedCompletePartialOrder (c ℓ₁ ℓ₂ : Level) : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where | ||
field | ||
poset : Poset c ℓ₁ ℓ₂ | ||
isDirectedCompletePartialOrder : IsDirectedCompletePartialOrder poset | ||
|
||
open Poset poset public | ||
open IsDirectedCompletePartialOrder isDirectedCompletePartialOrder public | ||
|
||
------------------------------------------------------------------------ | ||
-- Scott-continuous functions | ||
------------------------------------------------------------------------ | ||
|
||
record ScottContinuous | ||
{c₁ ℓ₁₁ ℓ₁₂ c₂ ℓ₂₁ ℓ₂₂ : Level} | ||
(P : Poset c₁ ℓ₁₁ ℓ₁₂) | ||
(Q : Poset c₂ ℓ₂₁ ℓ₂₂) | ||
: Set (suc (c₁ ⊔ ℓ₁₁ ⊔ ℓ₁₂ ⊔ c₂ ⊔ ℓ₂₁ ⊔ ℓ₂₂)) where | ||
field | ||
f : Poset.Carrier P → Poset.Carrier Q | ||
isScottContinuous : IsScottContinuous P Q f | ||
|
||
open IsScottContinuous isScottContinuous public | ||
|
||
------------------------------------------------------------------------ | ||
-- Lubs | ||
------------------------------------------------------------------------ | ||
|
||
record Lub {c ℓ₁ ℓ₂ : Level} {P : Poset c ℓ₁ ℓ₂} {B : Set c} | ||
(f : B → Poset.Carrier P) : Set (c ⊔ ℓ₁ ⊔ ℓ₂) where | ||
open Poset P | ||
field | ||
lub : Carrier | ||
isLub : IsLub P f lub |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,38 @@ | ||
------------------------------------------------------------------------ | ||
-- The Agda standard library | ||
-- | ||
-- Definitions for domain theory | ||
------------------------------------------------------------------------ | ||
|
||
|
||
|
||
|
||
{-# OPTIONS --cubical-compatible --safe #-} | ||
|
||
module Relation.Binary.Domain.Definitions where | ||
|
||
open import Data.Product using (∃-syntax; _×_; _,_) | ||
open import Level using (Level; _⊔_) | ||
open import Relation.Binary.Core using (Rel) | ||
|
||
private | ||
variable | ||
a b ℓ : Level | ||
A B : Set a | ||
|
||
------------------------------------------------------------------------ | ||
-- Directed families | ||
------------------------------------------------------------------------ | ||
|
||
-- IsSemidirectedFamily : (P : Poset c ℓ₁ ℓ₂) → ∀ {Ix : Set c} → (s : Ix → Poset.Carrier P) → Set _ | ||
-- IsSemidirectedFamily P {Ix} s = ∀ i j → ∃[ k ] (Poset._≤_ P (s i) (s k) × Poset._≤_ P (s j) (s k)) | ||
|
||
semidirected : {A : Set a} → Rel A ℓ → (B : Set b) → (B → A) → Set _ | ||
semidirected _≤_ B f = ∀ i j → ∃[ k ] (f i ≤ f k × f j ≤ f k) | ||
|
||
------------------------------------------------------------------------ | ||
-- Least upper bounds | ||
------------------------------------------------------------------------ | ||
|
||
leastupperbound : {A : Set a} → Rel A ℓ → (B : Set b) → (B → A) → A → Set _ | ||
leastupperbound _≤_ B f lub = (∀ i → f i ≤ lub) × (∀ y → (∀ i → f i ≤ y) → lub ≤ y) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,79 @@ | ||
------------------------------------------------------------------------ | ||
-- The Agda standard library | ||
-- | ||
-- Structures for domain theory | ||
------------------------------------------------------------------------ | ||
|
||
{-# OPTIONS --cubical-compatible --safe #-} | ||
|
||
module Relation.Binary.Domain.Structures where | ||
|
||
open import Data.Product using (_×_; _,_; proj₁; proj₂) | ||
open import Function using (_∘_) | ||
open import Level using (Level; _⊔_; suc) | ||
open import Relation.Binary.Bundles using (Poset) | ||
open import Relation.Binary.Domain.Definitions | ||
|
||
private variable | ||
a b c ℓ ℓ₁ ℓ₂ : Level | ||
A B : Set a | ||
|
||
|
||
module _ {c ℓ₁ ℓ₂ : Level} (P : Poset c ℓ₁ ℓ₂) where | ||
open Poset P | ||
|
||
record IsLub {b : Level} {B : Set b} (f : B → Carrier) | ||
(lub : Carrier) : Set (b ⊔ c ⊔ ℓ₁ ⊔ ℓ₂) where | ||
field | ||
isLeastUpperBound : leastupperbound _≤_ B f lub | ||
|
||
isUpperBound : ∀ i → f i ≤ lub | ||
isUpperBound = proj₁ isLeastUpperBound | ||
|
||
isLeast : ∀ y → (∀ i → f i ≤ y) → lub ≤ y | ||
isLeast = proj₂ isLeastUpperBound | ||
|
||
record IsDirectedFamily {b : Level} {B : Set b} (f : B → Carrier) | ||
: Set (b ⊔ c ⊔ ℓ₁ ⊔ ℓ₂) where | ||
no-eta-equality | ||
field | ||
elt : B | ||
isSemidirected : semidirected _≤_ B f | ||
|
||
record IsDirectedCompletePartialOrder : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where | ||
field | ||
⋁ : ∀ {B : Set c} | ||
→ (f : B → Carrier) | ||
→ IsDirectedFamily f | ||
→ Carrier | ||
⋁-isLub : ∀ {B : Set c} | ||
→ (f : B → Carrier) | ||
→ (dir : IsDirectedFamily f) | ||
→ IsLub f (⋁ f dir) | ||
|
||
module _ {B : Set c} {f : B → Carrier} {dir : IsDirectedFamily f} where | ||
open IsLub (⋁-isLub f dir) | ||
renaming (isUpperBound to ⋁-≤; isLeast to ⋁-least) | ||
public | ||
|
||
------------------------------------------------------------------------ | ||
-- Scott‐continuous maps between two (possibly different‐universe) posets | ||
------------------------------------------------------------------------ | ||
|
||
module _ {c₁ ℓ₁₁ ℓ₁₂ c₂ ℓ₂₁ ℓ₂₂ : Level} | ||
(P : Poset c₁ ℓ₁₁ ℓ₁₂) | ||
(Q : Poset c₂ ℓ₂₁ ℓ₂₂) where | ||
|
||
private | ||
module P = Poset P | ||
module Q = Poset Q | ||
|
||
record IsScottContinuous (f : P.Carrier → Q.Carrier) | ||
: Set (suc (c₁ ⊔ ℓ₁₁ ⊔ ℓ₁₂ ⊔ c₂ ⊔ ℓ₂₁ ⊔ ℓ₂₂)) where | ||
field | ||
preserveLub : ∀ {B : Set c₁} {g : B → P.Carrier} | ||
→ (dir : IsDirectedFamily P g) | ||
→ (lub : P.Carrier) | ||
→ IsLub P g lub | ||
→ IsLub Q (f ∘ g) (f lub) | ||
cong : ∀ {x y} → x P.≈ y → f x Q.≈ f y |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,175 @@ | ||
------------------------------------------------------------------------ | ||
-- The Agda standard library | ||
-- | ||
-- Properties satisfied by directed complete partial orders | ||
------------------------------------------------------------------------ | ||
|
||
{-# OPTIONS --cubical-compatible --safe #-} | ||
|
||
module Relation.Binary.Properties.Domain where | ||
|
||
open import Relation.Binary.Bundles using (Poset) | ||
open import Level using (Level; Lift; lift) | ||
open import Function using (_∘_; id) | ||
open import Data.Product using (_,_; ∃) | ||
open import Data.Bool using (Bool; true; false; if_then_else_) | ||
open import Relation.Binary.Domain.Definitions | ||
open import Relation.Binary.Domain.Bundles using (DirectedCompletePartialOrder) | ||
open import Relation.Binary.Domain.Structures | ||
using (IsDirectedFamily; IsDirectedCompletePartialOrder; IsLub; IsScottContinuous) | ||
open import Relation.Binary.Morphism.Structures using (IsOrderHomomorphism) | ||
|
||
private variable | ||
c₁ ℓ₁₁ ℓ₁₂ c₂ ℓ₂₁ ℓ₂₂ c ℓ₁ ℓ₂ a ℓ : Level | ||
Ix A B : Set a | ||
|
||
------------------------------------------------------------------------ | ||
-- Properties of least upper bounds | ||
|
||
module _ (D : DirectedCompletePartialOrder c ℓ₁ ℓ₂) where | ||
private | ||
module D = DirectedCompletePartialOrder D | ||
|
||
uniqueLub : ∀ {s : Ix → D.Carrier} → (x y : D.Carrier) → | ||
IsLub D.poset s x → IsLub D.poset s y → x D.≈ y | ||
uniqueLub x y x-lub y-lub = D.antisym | ||
(IsLub.isLeast x-lub y (IsLub.isUpperBound y-lub)) | ||
(IsLub.isLeast y-lub x (IsLub.isUpperBound x-lub)) | ||
|
||
IsLub-cong : ∀ {s : Ix → D.Carrier} → {x y : D.Carrier} → x D.≈ y → | ||
IsLub D.poset s x → IsLub D.poset s y | ||
IsLub-cong x≈y x-lub = record | ||
{ isLeastUpperBound = | ||
jmougeot marked this conversation as resolved.
Show resolved
Hide resolved
|
||
(λ i → D.trans (IsLub.isUpperBound x-lub i) (D.reflexive x≈y)) | ||
, (λ z ub → D.trans (D.reflexive (D.Eq.sym x≈y)) (IsLub.isLeast x-lub z (λ i → D.trans (ub i) (D.reflexive D.Eq.refl)))) | ||
} | ||
|
||
------------------------------------------------------------------------ | ||
-- Scott continuity and monotonicity | ||
|
||
module _ {P : Poset c₁ ℓ₁₁ ℓ₁₂} {Q : Poset c₂ ℓ₂₁ ℓ₂₂} where | ||
private | ||
module P = Poset P | ||
module Q = Poset Q | ||
|
||
isMonotone : (P-DirectedCompletePartialOrder : IsDirectedCompletePartialOrder P) → | ||
(f : P.Carrier → Q.Carrier) → (isCts : IsScottContinuous P Q f) → | ||
IsOrderHomomorphism P._≈_ Q._≈_ P._≤_ Q._≤_ f | ||
isMonotone P-DirectedCompletePartialOrder f isCts = record | ||
{ cong = IsScottContinuous.cong isCts | ||
; mono = mono-proof | ||
} | ||
where | ||
mono-proof : ∀ {x y} → x P.≤ y → f x Q.≤ f y | ||
mono-proof {x} {y} x≤y = IsLub.isUpperBound fs-lub (lift true) | ||
where | ||
s : Lift c₁ Bool → P.Carrier | ||
s (lift b) = if b then x else y | ||
|
||
sx≤sfalse : ∀ b → s b P.≤ s (lift false) | ||
sx≤sfalse (lift true) = x≤y | ||
sx≤sfalse (lift false) = P.refl | ||
|
||
s-directed : IsDirectedFamily P s | ||
s-directed = record | ||
{ elt = lift true | ||
; isSemidirected = λ i j → (lift false , sx≤sfalse i , sx≤sfalse j) | ||
} | ||
|
||
s-lub : IsLub P s y | ||
s-lub = record { isLeastUpperBound = sx≤sfalse , (λ _ proof → proof (lift false))} | ||
|
||
fs-lub : IsLub Q (f ∘ s) (f y) | ||
fs-lub = IsScottContinuous.preserveLub isCts s-directed y s-lub | ||
|
||
map-directed : {s : Ix → P.Carrier} → (f : P.Carrier → Q.Carrier)→ | ||
IsOrderHomomorphism P._≈_ Q._≈_ P._≤_ Q._≤_ f → | ||
IsDirectedFamily P s → IsDirectedFamily Q (f ∘ s) | ||
map-directed f ismonotone dir = record | ||
{ elt = IsDirectedFamily.elt dir | ||
; isSemidirected = semi | ||
} | ||
where | ||
module f = IsOrderHomomorphism ismonotone | ||
|
||
semi = λ i j → let (k , s[i]≤s[k] , s[j]≤s[k]) = IsDirectedFamily.isSemidirected dir i j | ||
in k , f.mono s[i]≤s[k] , f.mono s[j]≤s[k] | ||
|
||
------------------------------------------------------------------------ | ||
-- Scott continuous functions | ||
|
||
module _ {P Q R : Poset c ℓ₁ ℓ₂} where | ||
private | ||
module P = Poset P | ||
module Q = Poset Q | ||
module R = Poset R | ||
|
||
ScottId : {P : Poset c ℓ₁ ℓ₂} → IsScottContinuous P P id | ||
jmougeot marked this conversation as resolved.
Show resolved
Hide resolved
|
||
ScottId = record | ||
{ preserveLub = λ _ _ → id | ||
; cong = id } | ||
|
||
cts-cong : (f : R.Carrier → Q.Carrier) (g : P.Carrier → R.Carrier) → | ||
IsScottContinuous R Q f → IsScottContinuous P R g → | ||
IsOrderHomomorphism P._≈_ R._≈_ P._≤_ R._≤_ g → IsScottContinuous P Q (f ∘ g) | ||
cts-cong f g isCtsf isCtsG monog = record | ||
{ preserveLub = λ dir lub → f.preserveLub (map-directed g monog dir) (g lub) ∘ g.preserveLub dir lub | ||
; cong = f.cong ∘ g.cong | ||
} | ||
where | ||
module f = IsScottContinuous isCtsf | ||
module g = IsScottContinuous isCtsG | ||
|
||
------------------------------------------------------------------------ | ||
-- Suprema and pointwise ordering | ||
|
||
module _ {P : Poset c ℓ₁ ℓ₂} (D : DirectedCompletePartialOrder c ℓ₁ ℓ₂) where | ||
private | ||
module D = DirectedCompletePartialOrder D | ||
DP = D.poset | ||
|
||
lub-monotone : {s s' : Ix → D.Carrier} → | ||
{fam : IsDirectedFamily DP s} {fam' : IsDirectedFamily DP s'} → | ||
(∀ i → s i D.≤ s' i) → D.⋁ s fam D.≤ D.⋁ s' fam' | ||
lub-monotone {s' = s'} {fam' = fam'} p = D.⋁-least (D.⋁ s' fam') λ i → D.trans (p i) (D.⋁-≤ i) | ||
|
||
------------------------------------------------------------------------ | ||
-- Scott continuity module | ||
|
||
module ScottContinuity | ||
(D E : DirectedCompletePartialOrder c ℓ₁ ℓ₂) | ||
where | ||
private | ||
module D = DirectedCompletePartialOrder D | ||
module E = DirectedCompletePartialOrder E | ||
DP = D.poset | ||
EP = E.poset | ||
|
||
module _ (f : D.Carrier → E.Carrier) | ||
(isScott : IsScottContinuous DP EP f) | ||
jmougeot marked this conversation as resolved.
Show resolved
Hide resolved
|
||
(mono : IsOrderHomomorphism D._≈_ E._≈_ D._≤_ E._≤_ f) | ||
where | ||
private module f = IsOrderHomomorphism mono | ||
|
||
pres-lub : (s : Ix → D.Carrier) → (dir : IsDirectedFamily DP s) → | ||
f (D.⋁ s dir) E.≈ E.⋁ (f ∘ s) (map-directed f mono dir) | ||
pres-lub s dir = E.antisym | ||
(IsLub.isLeast | ||
(IsScottContinuous.preserveLub isScott dir (D.⋁ s dir) (D.⋁-isLub s dir)) | ||
(E.⋁ (f ∘ s) (map-directed f mono dir)) | ||
E.⋁-≤ | ||
) | ||
(IsLub.isLeast | ||
(E.⋁-isLub (f ∘ s) (map-directed f mono dir)) | ||
(f (D.⋁ s dir)) | ||
(λ i → f.mono (D.⋁-≤ i)) | ||
) | ||
|
||
isScottContinuous : (∀ {Ix} (s : Ix → D.Carrier) (dir : IsDirectedFamily DP s) → | ||
IsLub E.poset (f ∘ s) (f (D.⋁ s dir))) → | ||
IsScottContinuous DP EP f | ||
isScottContinuous pres-⋁ = record | ||
{ preserveLub = λ {_} {s} dir lub x → | ||
IsLub-cong E (f.cong (uniqueLub D (D.⋁ s dir) lub (D.⋁-isLub s dir) x)) (pres-⋁ s dir) | ||
; cong = f.cong | ||
} |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I don't think this layout is as per the style guide.