Skip to content

improvement-MATH-1494 #112

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
152 changes: 152 additions & 0 deletions src/main/java/org/apache/commons/math4/fitting/ExponentialFitting.java
Original file line number Diff line number Diff line change
@@ -0,0 +1,152 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.fitting;

import org.apache.commons.math4.exception.DimensionMismatchException;
import org.apache.commons.math4.exception.InsufficientDataException;
import org.apache.commons.math4.exception.util.DummyLocalizable;
import org.apache.commons.math4.linear.BlockRealMatrix;
import org.apache.commons.math4.linear.MatrixUtils;
import org.apache.commons.math4.linear.RealMatrix;

import java.util.Map;
import java.util.SortedMap;
import java.util.TreeMap;
import java.util.stream.IntStream;

/**
* Fits points to an exponential model using integral technique described in
* https://fr.scribd.com/doc/14674814/Regressions-et-equations-integrales
* written by Jacquelin
*
* Model fit can be queried for initial value, beta, and baseline to equation formed by
* y=Initial*exp(Beta*x)+Baseline or y = a2 + b2 * exp(c2*x)
* The accuracy of the fit rises with the volume of data supplied.
*/

public class ExponentialFitting {

public double getBaseline() {
return a2;
}

public double getInitial() {
return b2;
}

public double getBeta() {
return c2;
}

private double a2;
private double b2;
private double c2;
private boolean isSorted = false;
private SortedMap<Double, Double>data;

public ExponentialFitting(final SortedMap<Double, Double> _dataset) {
data = _dataset;
}

public ExponentialFitting() {
data = new TreeMap();
}

public void addData(double x, double y) {
data.put(x, y);
}

public void addData(Map<Double, Double> _mapData) {
_mapData.entrySet().forEach(e -> data.put(e.getKey(), e.getValue()));
}

public void addData(double[] x, double[] y) {
if (x.length != y.length) {
throw new DimensionMismatchException(new DummyLocalizable("Array lengths must be equal"), x.length, y.length);
}
IntStream.range(0, x.length).forEach(i -> data.put(x[i], y[i]));
}

public void evaluate() {
if (data.size() < 3) {
throw new InsufficientDataException(new DummyLocalizable("Three data points minimum required"));
}
final double[] x = data.keySet().stream().mapToDouble(Double::doubleValue).toArray();
final double[] y = data.values().stream().mapToDouble(Double::doubleValue).toArray();
c2 = ExtractBeta(x, y);//Beta
RealMatrix result = extractInitalAndBaseline(x, y, c2);
a2 = result.getEntry(0, 0);//BaseLine
b2 = result.getEntry(1, 0);//Initial
}

private double ExtractBeta(double[] _x, double[] _y) {
double Sk;
double SkPrevious = 0.0;
double sumX2 = 0.0;
double sumXS = 0.0;
double sumS2 = 0.0;
double sumXY = 0.0;
double sumYS = 0.0;
SkPrevious = 0.0;
for (int i = 1; i < _x.length; i++) {
Sk = SkPrevious + (_y[i] + _y[i - 1]) / 2 * (_x[i] - _x[i - 1]);
double difX = _x[i] - _x[0];
double difY = _y[i] - _y[0];
sumX2 += difX * difX;
sumXS += difX * Sk;
sumS2 += Sk * Sk;
sumXY += difX * difY;
sumYS += difY * Sk;
SkPrevious = Sk;
}

RealMatrix main = new BlockRealMatrix(2, 2);
main.setEntry(0, 0, sumX2);
main.setEntry(0, 1, sumXS);
main.setEntry(1, 0, sumXS);
main.setEntry(1, 1, sumS2);
RealMatrix small = new BlockRealMatrix(2, 1);
small.setEntry(0, 0, sumXY);
small.setEntry(1, 0, sumYS);
return MatrixUtils.inverse(main).multiply(small).getEntry(1, 0);//Beta;
}

private RealMatrix extractInitalAndBaseline(double[] _x, double[] _y, double _beta) {
double sumTheta = 0.0;
double sumThetaY = 0.0;
double sumTheta2 = 0.0;
double theta = 0.0;
double sumY = 0.0;
for (int i = 0; i < _x.length; i++) {
sumY += _y[i];
theta = Math.exp(_beta * (_x[i] - _x[0]));
sumTheta += theta;
sumThetaY += theta * _y[i];
sumTheta2 += theta * theta;
}
RealMatrix main = new BlockRealMatrix(2, 2);
RealMatrix small = new BlockRealMatrix(2, 1);
main.setEntry(0, 0, _x.length);
main.setEntry(0, 1, sumTheta);
main.setEntry(1, 0, sumTheta);
main.setEntry(1, 1, sumTheta2);
small.setEntry(0, 0, sumY);
small.setEntry(1, 0, sumThetaY);
return MatrixUtils.inverse(main).multiply(small);
}

}
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
package org.apache.commons.math4.fitting;

import org.junit.Assert;
import org.junit.Test;

import java.util.SortedMap;
import java.util.TreeMap;


public class ExponentialFittingTest {
@Test
public void evaluate() {
SortedMap<Double, Double> sortedData = new TreeMap<>();
sortedData.put(0.0, 1.0);
sortedData.put(1.0, 3.0);
sortedData.put(2.0, 9.0);
sortedData.put(3.0, 50.0);
ExponentialFitting expFit = new ExponentialFitting(sortedData);
expFit.evaluate();
Assert.assertEquals(-0.7238210, expFit.getBaseline(), 0.000001);
Assert.assertEquals( 0.6979045, expFit.getInitial(), 0.000001);
Assert.assertEquals( 1.4253654, expFit.getBeta(), 0.000001);

ExponentialFitting expFit2 = new ExponentialFitting();
// Test unsorted data presentation.
expFit2.addData(2.0,9.0);
expFit2.addData(0.0, 1.0);
expFit2.addData(3.0, 50.0);
expFit2.addData(1.0, 3.0);
expFit2.evaluate();
Assert.assertEquals(-0.723821, expFit2.getBaseline(), 0.000001);
Assert.assertEquals(0.6979045, expFit2.getInitial(), 0.000001);
Assert.assertEquals(1.4253654, expFit2.getBeta(), 0.000001);

// Test unsorted array entry
ExponentialFitting expFit3 = new ExponentialFitting();
double[] xArray = {2.0, 3.0, 1.0, 0.0};
double[] yArray = {9.0, 50.0, 3.0, 1.0};
expFit3.addData(xArray, yArray);
expFit3.evaluate();
Assert.assertEquals(-0.723821, expFit3.getBaseline(), 0.000001);
Assert.assertEquals(0.6979045, expFit3.getInitial(), 0.000001);
Assert.assertEquals(1.4253654, expFit3.getBeta(), 0.000001);
}
}