|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 2, |
| 6 | + "metadata": { |
| 7 | + "collapsed": true |
| 8 | + }, |
| 9 | + "outputs": [], |
| 10 | + "source": [ |
| 11 | + "import numpy as np\n", |
| 12 | + "from matplotlib import pyplot as plt\n", |
| 13 | + "%matplotlib inline" |
| 14 | + ] |
| 15 | + }, |
| 16 | + { |
| 17 | + "cell_type": "code", |
| 18 | + "execution_count": 3, |
| 19 | + "metadata": { |
| 20 | + "collapsed": true |
| 21 | + }, |
| 22 | + "outputs": [], |
| 23 | + "source": [ |
| 24 | + "f = open('./data.txt')\n", |
| 25 | + "d = f.read()\n", |
| 26 | + "f.close()" |
| 27 | + ] |
| 28 | + }, |
| 29 | + { |
| 30 | + "cell_type": "code", |
| 31 | + "execution_count": 4, |
| 32 | + "metadata": { |
| 33 | + "collapsed": false |
| 34 | + }, |
| 35 | + "outputs": [], |
| 36 | + "source": [ |
| 37 | + "data = d[1260:]\n", |
| 38 | + "data = data.lower().decode('utf-8')\n", |
| 39 | + "import re" |
| 40 | + ] |
| 41 | + }, |
| 42 | + { |
| 43 | + "cell_type": "code", |
| 44 | + "execution_count": 5, |
| 45 | + "metadata": { |
| 46 | + "collapsed": false |
| 47 | + }, |
| 48 | + "outputs": [], |
| 49 | + "source": [ |
| 50 | + "p = re.sub('[^A-Za-z]+', ' ', data)\n", |
| 51 | + "ds = p.split()" |
| 52 | + ] |
| 53 | + }, |
| 54 | + { |
| 55 | + "cell_type": "code", |
| 56 | + "execution_count": 6, |
| 57 | + "metadata": { |
| 58 | + "collapsed": false |
| 59 | + }, |
| 60 | + "outputs": [], |
| 61 | + "source": [ |
| 62 | + "u = np.unique(ds, return_counts=True)" |
| 63 | + ] |
| 64 | + }, |
| 65 | + { |
| 66 | + "cell_type": "code", |
| 67 | + "execution_count": 7, |
| 68 | + "metadata": { |
| 69 | + "collapsed": false, |
| 70 | + "scrolled": false |
| 71 | + }, |
| 72 | + "outputs": [], |
| 73 | + "source": [ |
| 74 | + "bow = {}\n", |
| 75 | + "rev_bow = {}\n", |
| 76 | + "i = 0\n", |
| 77 | + "for ix in range(len(u[0])):\n", |
| 78 | + " if u[1][ix] > 2:\n", |
| 79 | + " bow[i] = u[0][ix]\n", |
| 80 | + " rev_bow[u[0][ix]] = i\n", |
| 81 | + " i += 1" |
| 82 | + ] |
| 83 | + }, |
| 84 | + { |
| 85 | + "cell_type": "code", |
| 86 | + "execution_count": 8, |
| 87 | + "metadata": { |
| 88 | + "collapsed": false |
| 89 | + }, |
| 90 | + "outputs": [ |
| 91 | + { |
| 92 | + "data": { |
| 93 | + "text/plain": [ |
| 94 | + "1781" |
| 95 | + ] |
| 96 | + }, |
| 97 | + "execution_count": 8, |
| 98 | + "metadata": {}, |
| 99 | + "output_type": "execute_result" |
| 100 | + } |
| 101 | + ], |
| 102 | + "source": [ |
| 103 | + "len(bow)" |
| 104 | + ] |
| 105 | + }, |
| 106 | + { |
| 107 | + "cell_type": "code", |
| 108 | + "execution_count": 9, |
| 109 | + "metadata": { |
| 110 | + "collapsed": true |
| 111 | + }, |
| 112 | + "outputs": [], |
| 113 | + "source": [ |
| 114 | + "def get_one_hot_vector(word):\n", |
| 115 | + " vec = np.zeros((len(bow),))\n", |
| 116 | + " vec[rev_bow[word]] = 1.0\n", |
| 117 | + " \n", |
| 118 | + " return vec\n", |
| 119 | + "\n", |
| 120 | + "def get_word_from_vec(vec):\n", |
| 121 | + " ind = np.argmax(vec)\n", |
| 122 | + " \n", |
| 123 | + " return bow[ind]" |
| 124 | + ] |
| 125 | + }, |
| 126 | + { |
| 127 | + "cell_type": "code", |
| 128 | + "execution_count": 10, |
| 129 | + "metadata": { |
| 130 | + "collapsed": false, |
| 131 | + "scrolled": false |
| 132 | + }, |
| 133 | + "outputs": [ |
| 134 | + { |
| 135 | + "name": "stdout", |
| 136 | + "output_type": "stream", |
| 137 | + "text": [ |
| 138 | + "tree\n" |
| 139 | + ] |
| 140 | + } |
| 141 | + ], |
| 142 | + "source": [ |
| 143 | + "a = get_one_hot_vector('tree')\n", |
| 144 | + "a_ = get_word_from_vec(a)\n", |
| 145 | + "\n", |
| 146 | + "print a_" |
| 147 | + ] |
| 148 | + }, |
| 149 | + { |
| 150 | + "cell_type": "code", |
| 151 | + "execution_count": 11, |
| 152 | + "metadata": { |
| 153 | + "collapsed": false, |
| 154 | + "scrolled": false |
| 155 | + }, |
| 156 | + "outputs": [], |
| 157 | + "source": [ |
| 158 | + "all_data = p.split()\n", |
| 159 | + "len(all_data)\n", |
| 160 | + "\n", |
| 161 | + "dataset = []#np.zeros((len(all_data), len(bow)))\n", |
| 162 | + "# print dataset.shape" |
| 163 | + ] |
| 164 | + }, |
| 165 | + { |
| 166 | + "cell_type": "code", |
| 167 | + "execution_count": 12, |
| 168 | + "metadata": { |
| 169 | + "collapsed": false |
| 170 | + }, |
| 171 | + "outputs": [], |
| 172 | + "source": [ |
| 173 | + "for w in range(len(all_data)):\n", |
| 174 | + " try:\n", |
| 175 | + " dataset.append(get_one_hot_vector(all_data[w]))\n", |
| 176 | + " except:\n", |
| 177 | + " pass" |
| 178 | + ] |
| 179 | + }, |
| 180 | + { |
| 181 | + "cell_type": "code", |
| 182 | + "execution_count": 13, |
| 183 | + "metadata": { |
| 184 | + "collapsed": false |
| 185 | + }, |
| 186 | + "outputs": [ |
| 187 | + { |
| 188 | + "name": "stdout", |
| 189 | + "output_type": "stream", |
| 190 | + "text": [ |
| 191 | + "(35456, 1781)\n" |
| 192 | + ] |
| 193 | + } |
| 194 | + ], |
| 195 | + "source": [ |
| 196 | + "dataset = np.asarray(dataset)\n", |
| 197 | + "print dataset.shape" |
| 198 | + ] |
| 199 | + }, |
| 200 | + { |
| 201 | + "cell_type": "code", |
| 202 | + "execution_count": 14, |
| 203 | + "metadata": { |
| 204 | + "collapsed": true |
| 205 | + }, |
| 206 | + "outputs": [], |
| 207 | + "source": [ |
| 208 | + "np.save('all_word_data', dataset)" |
| 209 | + ] |
| 210 | + }, |
| 211 | + { |
| 212 | + "cell_type": "code", |
| 213 | + "execution_count": 16, |
| 214 | + "metadata": { |
| 215 | + "collapsed": true |
| 216 | + }, |
| 217 | + "outputs": [], |
| 218 | + "source": [ |
| 219 | + "import pickle as pk\n", |
| 220 | + "\n", |
| 221 | + "fb = open('bow.pkl', 'w')\n", |
| 222 | + "fr = open('rev_bow.pkl', 'w')" |
| 223 | + ] |
| 224 | + }, |
| 225 | + { |
| 226 | + "cell_type": "code", |
| 227 | + "execution_count": 18, |
| 228 | + "metadata": { |
| 229 | + "collapsed": true |
| 230 | + }, |
| 231 | + "outputs": [], |
| 232 | + "source": [ |
| 233 | + "pk.dump(bow, fb)\n", |
| 234 | + "pk.dump(rev_bow, fr)" |
| 235 | + ] |
| 236 | + }, |
| 237 | + { |
| 238 | + "cell_type": "code", |
| 239 | + "execution_count": 19, |
| 240 | + "metadata": { |
| 241 | + "collapsed": true |
| 242 | + }, |
| 243 | + "outputs": [], |
| 244 | + "source": [ |
| 245 | + "fb.close()\n", |
| 246 | + "fr.close()" |
| 247 | + ] |
| 248 | + }, |
| 249 | + { |
| 250 | + "cell_type": "code", |
| 251 | + "execution_count": null, |
| 252 | + "metadata": { |
| 253 | + "collapsed": true |
| 254 | + }, |
| 255 | + "outputs": [], |
| 256 | + "source": [] |
| 257 | + } |
| 258 | + ], |
| 259 | + "metadata": { |
| 260 | + "kernelspec": { |
| 261 | + "display_name": "Python 2", |
| 262 | + "language": "python", |
| 263 | + "name": "python2" |
| 264 | + }, |
| 265 | + "language_info": { |
| 266 | + "codemirror_mode": { |
| 267 | + "name": "ipython", |
| 268 | + "version": 2 |
| 269 | + }, |
| 270 | + "file_extension": ".py", |
| 271 | + "mimetype": "text/x-python", |
| 272 | + "name": "python", |
| 273 | + "nbconvert_exporter": "python", |
| 274 | + "pygments_lexer": "ipython2", |
| 275 | + "version": "2.7.12" |
| 276 | + } |
| 277 | + }, |
| 278 | + "nbformat": 4, |
| 279 | + "nbformat_minor": 2 |
| 280 | +} |
0 commit comments