|
| 1 | +/// A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99. |
| 2 | +/// |
| 3 | +/// Find the largest palindrome made from the product of two 3-digit numbers. |
| 4 | +/// |
| 5 | +/// ```rust |
| 6 | +/// use self::project_euler::m4::largest_palindrome_product_of_two_3_digits; |
| 7 | +/// assert_eq!(largest_palindrome_product_of_two_3_digits(), 906609); |
| 8 | +/// ``` |
| 9 | +pub fn largest_palindrome_product_of_two_3_digits() -> u32 { |
| 10 | + let is_palindrome = |i: u32| -> Option<u32> { |
| 11 | + let s = i.to_string(); |
| 12 | + if s.chars().rev().collect::<String>() == s { |
| 13 | + Some(i) |
| 14 | + } else { |
| 15 | + None |
| 16 | + } |
| 17 | + }; |
| 18 | + |
| 19 | + let mut largest_palindrome = 0; |
| 20 | + for x in (100..1000).rev() { |
| 21 | + for y in (100..1000).rev() { |
| 22 | + if let Some(i) = is_palindrome(x * y) { |
| 23 | + if i > largest_palindrome { |
| 24 | + largest_palindrome = i |
| 25 | + } |
| 26 | + } |
| 27 | + } |
| 28 | + } |
| 29 | + largest_palindrome |
| 30 | +} |
| 31 | + |
| 32 | +/// A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99. |
| 33 | +/// |
| 34 | +/// Find the largest palindrome made from the product of two 3-digit numbers. |
| 35 | +/// |
| 36 | +/// ```rust |
| 37 | +/// use self::project_euler::m4::largest_palindrome_product_of_two_3_digits_mod_10; |
| 38 | +/// assert_eq!(largest_palindrome_product_of_two_3_digits_mod_10(), 906609); |
| 39 | +/// ``` |
| 40 | +pub fn largest_palindrome_product_of_two_3_digits_mod_10() -> u32 { |
| 41 | + let is_palindrome = |i: u32| -> Option<u32> { |
| 42 | + let mut rev = 0u32; |
| 43 | + { |
| 44 | + let mut tmp = i; |
| 45 | + while tmp > 0 { |
| 46 | + // rev = new rev 0-9 + old rev left shift [12 -> 120, 1 -> 10, 132 -> 1320] |
| 47 | + rev = tmp % 10 + rev * 10; |
| 48 | + tmp /= 10; |
| 49 | + } |
| 50 | + } |
| 51 | + if i == rev { |
| 52 | + Some(i) |
| 53 | + } else { |
| 54 | + None |
| 55 | + } |
| 56 | + }; |
| 57 | + |
| 58 | + let mut largest_palindrome = 0; |
| 59 | + for x in (100..1000).rev() { |
| 60 | + for y in (100..1000).rev() { |
| 61 | + if let Some(i) = is_palindrome(x * y) { |
| 62 | + if i > largest_palindrome { |
| 63 | + largest_palindrome = i |
| 64 | + } |
| 65 | + } |
| 66 | + } |
| 67 | + } |
| 68 | + largest_palindrome |
| 69 | +} |
| 70 | + |
| 71 | +/// A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99. |
| 72 | +/// |
| 73 | +/// Find the largest palindrome made from the product of two 3-digit numbers. |
| 74 | +/// |
| 75 | +/// ```rust |
| 76 | +/// use self::project_euler::m4::largest_palindrome_product_of_two_3_digits_mod_10_permutation_pair; |
| 77 | +/// assert_eq!(largest_palindrome_product_of_two_3_digits_mod_10_permutation_pair(), 906609); |
| 78 | +/// ``` |
| 79 | +pub fn largest_palindrome_product_of_two_3_digits_mod_10_permutation_pair() -> u32 { |
| 80 | + let is_palindrome = |i: u32| -> Option<u32> { |
| 81 | + let mut rev = 0u32; |
| 82 | + { |
| 83 | + let mut tmp = i; |
| 84 | + while tmp > 0 { |
| 85 | + // rev = new rev 0-9 + old rev left shift [12 -> 120, 1 -> 10, 132 -> 1320] |
| 86 | + rev = tmp % 10 + rev * 10; |
| 87 | + tmp /= 10; |
| 88 | + } |
| 89 | + } |
| 90 | + println!("{} {}", i, rev); |
| 91 | + if i == rev { |
| 92 | + Some(i) |
| 93 | + } else { |
| 94 | + None |
| 95 | + } |
| 96 | + }; |
| 97 | + |
| 98 | + let mut largest_palindrome = 0; |
| 99 | + // [999 998 997 996] |
| 100 | + // [999-100 998-100 997-100 996-100] |
| 101 | + for x in (100..1000).rev() { |
| 102 | + for y in (100..=x).rev() { |
| 103 | + if let Some(i) = is_palindrome(x * y) { |
| 104 | + if i > largest_palindrome { |
| 105 | + largest_palindrome = i |
| 106 | + } |
| 107 | + } |
| 108 | + } |
| 109 | + } |
| 110 | + largest_palindrome |
| 111 | +} |
| 112 | + |
| 113 | +/// A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99. |
| 114 | +/// |
| 115 | +/// Find the largest palindrome made from the product of two 3-digit numbers. |
| 116 | +/// |
| 117 | +/// ```rust |
| 118 | +/// use self::project_euler::m4::largest_palindrome_product_of_two_3_digits_mod_10_permutation_pair_tail_cut; |
| 119 | +/// assert_eq!(largest_palindrome_product_of_two_3_digits_mod_10_permutation_pair_tail_cut(), 906609); |
| 120 | +/// ``` |
| 121 | +pub fn largest_palindrome_product_of_two_3_digits_mod_10_permutation_pair_tail_cut() -> u32 { |
| 122 | + let is_palindrome = |i: u32| -> Option<u32> { |
| 123 | + let mut rev = 0u32; |
| 124 | + { |
| 125 | + let mut tmp = i; |
| 126 | + while tmp > 0 { |
| 127 | + // rev = new rev 0-9 + old rev left shift [12 -> 120, 1 -> 10, 132 -> 1320] |
| 128 | + rev = tmp % 10 + rev * 10; |
| 129 | + tmp /= 10; |
| 130 | + } |
| 131 | + } |
| 132 | + println!("{} {}", i, rev); |
| 133 | + if i == rev { |
| 134 | + Some(i) |
| 135 | + } else { |
| 136 | + None |
| 137 | + } |
| 138 | + }; |
| 139 | + |
| 140 | + let mut largest_palindrome = 0; |
| 141 | + // [999 998 997 996] |
| 142 | + // [999-100 998-100 997-100 996-100] |
| 143 | + // area -> -> -> -> -> | -> [in this sequence it's always smaller than largest_palindrome] |
| 144 | + for x in (100..1000).rev() { |
| 145 | + for y in (100..=x).rev() { |
| 146 | + if x * y <= largest_palindrome { |
| 147 | + break; |
| 148 | + } |
| 149 | + if let Some(i) = is_palindrome(x * y) { |
| 150 | + if i > largest_palindrome { |
| 151 | + largest_palindrome = i |
| 152 | + } |
| 153 | + } |
| 154 | + } |
| 155 | + } |
| 156 | + largest_palindrome |
| 157 | +} |
| 158 | + |
| 159 | +/// A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99. |
| 160 | +/// |
| 161 | +/// Find the largest palindrome made from the product of two 3-digit numbers. |
| 162 | +/// |
| 163 | +/// ```rust |
| 164 | +/// use self::project_euler::m4::largest_palindrome_product_of_two_3_digits_factorization; |
| 165 | +/// assert_eq!(largest_palindrome_product_of_two_3_digits_factorization(), 906609); |
| 166 | +/// ``` |
| 167 | +pub fn largest_palindrome_product_of_two_3_digits_factorization() -> u32 { |
| 168 | + let is_palindrome = |i: u32| -> Option<u32> { |
| 169 | + let mut rev = 0u32; |
| 170 | + { |
| 171 | + let mut tmp = i; |
| 172 | + while tmp > 0 { |
| 173 | + // rev = new rev 0-9 + old rev left shift [12 -> 120, 1 -> 10, 132 -> 1320] |
| 174 | + rev = tmp % 10 + rev * 10; |
| 175 | + tmp /= 10; |
| 176 | + } |
| 177 | + } |
| 178 | + if i == rev { |
| 179 | + Some(i) |
| 180 | + } else { |
| 181 | + None |
| 182 | + } |
| 183 | + }; |
| 184 | + |
| 185 | + let mut largest_palindrome = 0; |
| 186 | + // [999 998 997 996] |
| 187 | + // [999-100 998-100 997-100 996-100] |
| 188 | + // area -> -> -> -> -> | -> [in this sequence it's always smaller than largest_palindrome] |
| 189 | + |
| 190 | + // n is in 6 digits < 999*999=998001. |
| 191 | + // n = xyx_xyx = 100_000x + 10_000y + 1_000z + 100z + 10y + 1x |
| 192 | + // = 100_001x + 10_010y + 1_100z |
| 193 | + // = 11 * (9091 + 910 + 100) |
| 194 | + // n = a * b |
| 195 | + // = 11c * b || a * 11c || 11c * 11d |
| 196 | + for x in (100..1000).rev() { |
| 197 | + if x % 11 == 0 { |
| 198 | + for y in (100..=x).rev() { |
| 199 | + if x * y <= largest_palindrome { |
| 200 | + break; |
| 201 | + } |
| 202 | + if let Some(i) = is_palindrome(x * y) { |
| 203 | + if i > largest_palindrome { |
| 204 | + largest_palindrome = i |
| 205 | + } |
| 206 | + } |
| 207 | + } |
| 208 | + } else { |
| 209 | + // 999 - 9 (999%11) = 990. 989 - 10 (989%11) = 979. |
| 210 | + for y in (100..=x - x % 11).rev().step_by(11) { |
| 211 | + if x * y <= largest_palindrome { |
| 212 | + break; |
| 213 | + } |
| 214 | + if let Some(i) = is_palindrome(x * y) { |
| 215 | + if i > largest_palindrome { |
| 216 | + largest_palindrome = i |
| 217 | + } |
| 218 | + } |
| 219 | + } |
| 220 | + } |
| 221 | + } |
| 222 | + largest_palindrome |
| 223 | +} |
0 commit comments