Skip to content

Add examples that showcase the use of Hyperparameter search with Transformers #589

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
272 changes: 272 additions & 0 deletions transformers_doc/en/hpo_transformers_hpo_examples_en.ipynb
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This looks really nice, would you also like to update the Hyperparameter search docs with these more complete examples?

Original file line number Diff line number Diff line change
@@ -0,0 +1,272 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "a5a74135",
"metadata": {},
"source": [
"# Hyperparameter Search Examples with 🤗 Transformers\n",
"This notebook demonstrates how to use various hyperparameter optimization backends (Optuna, Ray Tune, SigOpt, W&B) with 🤗 Transformers' `Trainer`."
]
},
{
"cell_type": "markdown",
"id": "2d6a084f",
"metadata": {},
"source": [
"## Setup\n",
"Before running the examples below, make sure to install all required packages:\n",
"```bash\n",
"pip install transformers optuna \"ray[tune]\" sigopt wandb datasets\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "4cf648e4",
"metadata": {},
"source": [
"## Data & Model Initialization"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c8f40952",
"metadata": {},
"outputs": [],
"source": [
"from datasets import load_dataset\n",
"from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer\n",
"\n",
"# Load a small subset of SST-2\n",
"dataset = load_dataset(\"glue\", \"sst2\", split=\"train[:200]\")\n",
"tokenizer = AutoTokenizer.from_pretrained(\"distilbert-base-uncased\")\n",
"\n",
"def preprocess(examples):\n",
" return tokenizer(examples[\"sentence\"], truncation=True, padding=\"max_length\")\n",
"\n",
"dataset = dataset.map(preprocess, batched=True).train_test_split(test_size=0.2)\n",
"\n",
"def model_init():\n",
" return AutoModelForSequenceClassification.from_pretrained(\"distilbert-base-uncased\", num_labels=2)\n"
]
},
{
"cell_type": "markdown",
"id": "a04ce98b",
"metadata": {},
"source": [
"## Common Objective Function"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "56a66516",
"metadata": {},
"outputs": [],
"source": [
"# Single-objective: minimize eval_loss\n",
"def compute_objective(metrics):\n",
" return metrics[\"eval_loss\"]\n"
]
},
{
"cell_type": "markdown",
"id": "c79d4e0f",
"metadata": {},
"source": [
"## 1. Optuna Example"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d08078c0",
"metadata": {},
"outputs": [],
"source": [
"import optuna\n",
"from transformers.integrations import EarlyStoppingCallback\n",
"\n",
"def optuna_hp_space(trial):\n",
" return {\n",
" \"learning_rate\": trial.suggest_float(\"learning_rate\", 1e-6, 1e-4, log=True),\n",
" \"weight_decay\": trial.suggest_float(\"weight_decay\", 0.0, 0.3),\n",
" \"num_train_epochs\": trial.suggest_int(\"num_train_epochs\", 1, 3),\n",
" \"per_device_train_batch_size\": trial.suggest_categorical(\"per_device_train_batch_size\", [16, 32, 64]),\n",
" \"warmup_steps\": trial.suggest_int(\"warmup_steps\", 0, 100),\n",
" }\n",
"\n",
"training_args = TrainingArguments(\"optuna-hpo\", evaluation_strategy=\"epoch\", logging_steps=10)\n",
"\n",
"trainer = Trainer(\n",
" args=training_args,\n",
" train_dataset=dataset[\"train\"],\n",
" eval_dataset=dataset[\"test\"],\n",
" tokenizer=tokenizer,\n",
" model_init=model_init,\n",
" compute_metrics=lambda p: {\"eval_loss\": p.loss},\n",
" callbacks=[EarlyStoppingCallback(early_stopping_patience=1)],\n",
")\n",
"\n",
"best_trial = trainer.hyperparameter_search(\n",
" direction=\"minimize\",\n",
" backend=\"optuna\",\n",
" hp_space=optuna_hp_space,\n",
" n_trials=5,\n",
" compute_objective=compute_objective,\n",
")\n",
"\n",
"print(\"Best Optuna trial:\", best_trial)\n"
]
},
{
"cell_type": "markdown",
"id": "a8ff17dd",
"metadata": {},
"source": [
"## 2. Ray Tune Example"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c1c10b3b",
"metadata": {},
"outputs": [],
"source": [
"from ray import tune\n",
"from ray.tune.schedulers import ASHAScheduler\n",
"from ray.tune.search.hyperopt import HyperOptSearch\n",
"\n",
"def ray_hp_space(trial_config):\n",
" return {\n",
" \"learning_rate\": trial_config[\"learning_rate\"],\n",
" \"per_device_train_batch_size\": trial_config[\"per_device_train_batch_size\"],\n",
" \"num_train_epochs\": trial_config[\"num_train_epochs\"],\n",
" }\n",
"\n",
"ray_search_space = {\n",
" \"learning_rate\": tune.loguniform(1e-5, 1e-3),\n",
" \"per_device_train_batch_size\": tune.choice([16, 32, 64]),\n",
" \"num_train_epochs\": tune.choice([2, 3, 4]),\n",
"}\n",
"\n",
"training_args = TrainingArguments(\"ray-hpo\", evaluation_strategy=\"epoch\", logging_steps=10)\n",
"\n",
"trainer = Trainer(\n",
" args=training_args,\n",
" train_dataset=dataset[\"train\"],\n",
" eval_dataset=dataset[\"test\"],\n",
" tokenizer=tokenizer,\n",
" model_init=model_init,\n",
" compute_metrics=lambda p: {\n",
" \"eval_loss\": p.loss,\n",
" \"eval_accuracy\": (p.predictions.argmax(-1) == p.label_ids).mean()\n",
" },\n",
")\n",
"\n",
"best_run = trainer.hyperparameter_search(\n",
" direction=\"maximize\",\n",
" backend=\"ray\",\n",
" hp_space=ray_hp_space,\n",
" n_trials=5,\n",
" search_alg=HyperOptSearch(metric=\"eval_accuracy\", mode=\"max\"),\n",
" scheduler=ASHAScheduler(metric=\"eval_accuracy\", mode=\"max\", max_t=3),\n",
" resources_per_trial={\"cpu\": 1, \"gpu\": 0},\n",
" compute_objective=lambda metrics: metrics[\"eval_accuracy\"],\n",
")\n",
"\n",
"print(\"Best Ray Tune run:\", best_run)\n"
]
},
{
"cell_type": "markdown",
"id": "1236b11b",
"metadata": {},
"source": [
"## 3. SigOpt Example"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bfd6cf35",
"metadata": {},
"outputs": [],
"source": [
"def sigopt_hp_space(trial):\n",
" return [\n",
" {\"bounds\": {\"min\": 1e-6, \"max\": 1e-4}, \"name\": \"learning_rate\", \"type\": \"double\"},\n",
" {\"bounds\": {\"min\": 0.0, \"max\": 0.3}, \"name\": \"weight_decay\", \"type\": \"double\"},\n",
" {\"categorical_values\": [\"16\", \"32\", \"64\"], \"name\": \"per_device_train_batch_size\", \"type\": \"categorical\"},\n",
" {\"bounds\": {\"min\": 1, \"max\": 3}, \"name\": \"num_train_epochs\", \"type\": \"int\"},\n",
" ]\n",
"\n",
"best_trials = trainer.hyperparameter_search(\n",
" direction=[\"minimize\", \"maximize\"],\n",
" backend=\"sigopt\",\n",
" hp_space=sigopt_hp_space,\n",
" n_trials=5,\n",
" compute_objective=lambda m: (m[\"eval_loss\"], m[\"eval_accuracy\"])\n",
")\n",
"\n",
"print(\"Best SigOpt trials:\", best_trials)\n"
]
},
{
"cell_type": "markdown",
"id": "b1cb72e0",
"metadata": {},
"source": [
"## 4. Weights & Biases (W&B) Example"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fd86a741",
"metadata": {},
"outputs": [],
"source": [
"import wandb\n",
"\n",
"def wandb_hp_space(trial):\n",
" return {\n",
" \"method\": \"random\",\n",
" \"metric\": {\"name\": \"eval_loss\", \"goal\": \"minimize\"},\n",
" \"parameters\": {\n",
" \"learning_rate\": {\"distribution\": \"uniform\", \"min\": 1e-6, \"max\": 1e-4},\n",
" \"per_device_train_batch_size\": {\"values\": [16, 32, 64]},\n",
" \"num_train_epochs\": {\"values\": [1, 2, 3]},\n",
" },\n",
" }\n",
"\n",
"best_runs = trainer.hyperparameter_search(\n",
" direction=\"minimize\",\n",
" backend=\"wandb\",\n",
" hp_space=wandb_hp_space,\n",
" n_trials=5,\n",
" compute_objective=compute_objective,\n",
")\n",
"\n",
"print(\"Best W&B runs:\", best_runs)\n"
]
},
{
"cell_type": "markdown",
"id": "3ab87274",
"metadata": {},
"source": [
"**End of examples.**\n",
"\n",
"You can adjust `n_trials`, early stopping, objective functions, and other settings to suit your specific task."
]
}
],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 5
}
Loading