Skip to content

Update model card for electra #37063

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 15 commits into from
Apr 3, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
143 changes: 86 additions & 57 deletions docs/source/en/model_doc/electra.md
Original file line number Diff line number Diff line change
@@ -14,66 +14,95 @@ rendered properly in your Markdown viewer.

-->

# ELECTRA

<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>

## Overview

The ELECTRA model was proposed in the paper [ELECTRA: Pre-training Text Encoders as Discriminators Rather Than
Generators](https://openreview.net/pdf?id=r1xMH1BtvB). ELECTRA is a new pretraining approach which trains two
transformer models: the generator and the discriminator. The generator's role is to replace tokens in a sequence, and
is therefore trained as a masked language model. The discriminator, which is the model we're interested in, tries to
identify which tokens were replaced by the generator in the sequence.

The abstract from the paper is the following:

*Masked language modeling (MLM) pretraining methods such as BERT corrupt the input by replacing some tokens with [MASK]
and then train a model to reconstruct the original tokens. While they produce good results when transferred to
downstream NLP tasks, they generally require large amounts of compute to be effective. As an alternative, we propose a
more sample-efficient pretraining task called replaced token detection. Instead of masking the input, our approach
corrupts it by replacing some tokens with plausible alternatives sampled from a small generator network. Then, instead
of training a model that predicts the original identities of the corrupted tokens, we train a discriminative model that
predicts whether each token in the corrupted input was replaced by a generator sample or not. Thorough experiments
demonstrate this new pretraining task is more efficient than MLM because the task is defined over all input tokens
rather than just the small subset that was masked out. As a result, the contextual representations learned by our
approach substantially outperform the ones learned by BERT given the same model size, data, and compute. The gains are
particularly strong for small models; for example, we train a model on one GPU for 4 days that outperforms GPT (trained
using 30x more compute) on the GLUE natural language understanding benchmark. Our approach also works well at scale,
where it performs comparably to RoBERTa and XLNet while using less than 1/4 of their compute and outperforms them when
using the same amount of compute.*

This model was contributed by [lysandre](https://huggingface.co/lysandre). The original code can be found [here](https://github.com/google-research/electra).

## Usage tips

- ELECTRA is the pretraining approach, therefore there is nearly no changes done to the underlying model: BERT. The
only change is the separation of the embedding size and the hidden size: the embedding size is generally smaller,
while the hidden size is larger. An additional projection layer (linear) is used to project the embeddings from their
embedding size to the hidden size. In the case where the embedding size is the same as the hidden size, no projection
layer is used.
- ELECTRA is a transformer model pretrained with the use of another (small) masked language model. The inputs are corrupted by that language model, which takes an input text that is randomly masked and outputs a text in which ELECTRA has to predict which token is an original and which one has been replaced. Like for GAN training, the small language model is trained for a few steps (but with the original texts as objective, not to fool the ELECTRA model like in a traditional GAN setting) then the ELECTRA model is trained for a few steps.
- The ELECTRA checkpoints saved using [Google Research's implementation](https://github.com/google-research/electra)
contain both the generator and discriminator. The conversion script requires the user to name which model to export
into the correct architecture. Once converted to the HuggingFace format, these checkpoints may be loaded into all
available ELECTRA models, however. This means that the discriminator may be loaded in the
[`ElectraForMaskedLM`] model, and the generator may be loaded in the
[`ElectraForPreTraining`] model (the classification head will be randomly initialized as it
doesn't exist in the generator).

## Resources

- [Text classification task guide](../tasks/sequence_classification)
- [Token classification task guide](../tasks/token_classification)
- [Question answering task guide](../tasks/question_answering)
- [Causal language modeling task guide](../tasks/language_modeling)
- [Masked language modeling task guide](../tasks/masked_language_modeling)
- [Multiple choice task guide](../tasks/multiple_choice)
# ELECTRA

[ELECTRA](https://huggingface.co/papers/2003.10555) modifies the pretraining objective of traditional masked language models like BERT. Instead of just masking tokens and asking the model to predict them, ELECTRA trains two models, a generator and a discriminator. The generator replaces some tokens with plausible alternatives and the discriminator (the model you'll actually use) learns to detect which tokens are original and which were replaced. This training approach is very efficient and scales to larger models while using considerably less compute.

This approach is super efficient because ELECTRA learns from every single token in the input, not just the masked ones. That's why even the small ELECTRA models can match or outperform much larger models while using way less computing resources.

You can find all the original ELECTRA checkpoints under the [ELECTRA](https://huggingface.co/collections/google/electra-release-64ff6e8b18830fabea30a1ab) release.

> [!TIP]
> Click on the right sidebar for more examples of how to use ELECTRA for different language tasks like sequence classification, token classification, and question answering.

The example below demonstrates how to classify text with [`Pipeline`] or the [`AutoModel`] class.

<hfoptions id="usage">
<hfoption id="Pipeline">

```py
import torch
from transformers import pipeline

classifier = pipeline(
task="text-classification",
model="bhadresh-savani/electra-base-emotion",
torch_dtype=torch.float16,
device=0
)
classifier("This restaurant has amazing food!")
```

</hfoption>
<hfoption id="AutoModel">

```py
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained(
"bhadresh-savani/electra-base-emotion",
)
model = AutoModelForSequenceClassification.from_pretrained(
"bhadresh-savani/electra-base-emotion",
torch_dtype=torch.float16
)
inputs = tokenizer("ELECTRA is more efficient than BERT", return_tensors="pt")

with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class_id = logits.argmax(dim=-1).item()
predicted_label = model.config.id2label[predicted_class_id]
print(f"Predicted label: {predicted_label}")
```

</hfoption>
<hfoption id="transformers-cli">

```bash
echo -e "This restaurant has amazing food." | transformers-cli run --task text-classification --model bhadresh-savani/electra-base-emotion --device 0
```

</hfoption>
</hfoptions>

## Notes

- ELECTRA consists of two transformer models, a generator (G) and a discriminator (D). For most downstream tasks, use the discriminator model (as indicated by `*-discriminator` in the name) rather than the generator.
- ELECTRA comes in three sizes: small (14M parameters), base (110M parameters), and large (335M parameters).
- ELECTRA can use a smaller embedding size than the hidden size for efficiency. When `embedding_size` is smaller than `hidden_size` in the configuration, a projection layer connects them.
- When using batched inputs with padding, make sure to use attention masks to prevent the model from attending to padding tokens.

```py
# Example of properly handling padding with attention masks
inputs = tokenizer(["Short text", "This is a much longer text that needs padding"],
padding=True,
return_tensors="pt")
outputs = model(**inputs) # automatically uses the attention_mask
```

- When using the discriminator for a downstream task, you can load it into any of the ELECTRA model classes ([`ElectraForSequenceClassification`], [`ElectraForTokenClassification`], etc.).

## ElectraConfig