Skip to content

Next batch of models with removed return_dict #37396

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 33 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
106 changes: 32 additions & 74 deletions src/transformers/models/albert/modeling_albert.py

Large diffs are not rendered by default.

109 changes: 26 additions & 83 deletions src/transformers/models/align/modeling_align.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,7 @@
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
can_return_tuple,
logging,
replace_return_docstrings,
)
Expand Down Expand Up @@ -643,11 +644,11 @@ def round_repeats(repeats):

self.blocks = nn.ModuleList(blocks)

@can_return_tuple
def forward(
self,
hidden_states: torch.FloatTensor,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> BaseModelOutputWithPoolingAndNoAttention:
all_hidden_states = (hidden_states,) if output_hidden_states else None

Expand All @@ -656,9 +657,6 @@ def forward(
if output_hidden_states:
all_hidden_states += (hidden_states,)

if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)

return BaseModelOutputWithNoAttention(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
Expand Down Expand Up @@ -1063,6 +1061,7 @@ def __init__(self, config):
self.layer = nn.ModuleList([AlignTextLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False

@can_return_tuple
def forward(
self,
hidden_states: torch.Tensor,
Expand All @@ -1074,8 +1073,7 @@ def forward(
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
) -> BaseModelOutputWithPastAndCrossAttentions:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
Expand Down Expand Up @@ -1128,18 +1126,6 @@ def forward(
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)

if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
Expand Down Expand Up @@ -1220,6 +1206,7 @@ def get_input_embeddings(self):
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value

@can_return_tuple
@add_start_docstrings_to_model_forward(ALIGN_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=AlignTextConfig)
def forward(
Expand All @@ -1232,8 +1219,7 @@ def forward(
inputs_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPoolingAndCrossAttentions]:
) -> BaseModelOutputWithPoolingAndCrossAttentions:
r"""
Returns:

Expand All @@ -1255,7 +1241,6 @@ def forward(
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict

if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
Expand Down Expand Up @@ -1298,20 +1283,16 @@ def forward(
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
)
encoder_outputs = self.encoder(
encoder_outputs: BaseModelOutputWithPoolingAndCrossAttentions = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = encoder_outputs.last_hidden_state
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None

if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]

return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
Expand Down Expand Up @@ -1350,14 +1331,14 @@ def __init__(self, config: AlignVisionConfig):
def get_input_embeddings(self) -> nn.Module:
return self.vision_model.embeddings.convolution

@can_return_tuple
@add_start_docstrings_to_model_forward(ALIGN_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPoolingAndNoAttention, config_class=AlignVisionConfig)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]:
) -> BaseModelOutputWithPoolingAndNoAttention:
r"""
Returns:

Expand All @@ -1383,26 +1364,21 @@ def forward(
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict

if pixel_values is None:
raise ValueError("You have to specify pixel_values")

embedding_output = self.embeddings(pixel_values)
encoder_outputs = self.encoder(
encoder_outputs: BaseModelOutputWithPoolingAndNoAttention = self.encoder(
embedding_output,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# Apply pooling
last_hidden_state = encoder_outputs[0]
last_hidden_state = encoder_outputs.last_hidden_state
pooled_output = self.pooler(last_hidden_state)
# Reshape (batch_size, projection_dim, 1 , 1) -> (batch_size, projection_dim)
pooled_output = pooled_output.reshape(pooled_output.shape[:2])

if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]

return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
Expand Down Expand Up @@ -1453,9 +1429,6 @@ def get_text_features(
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
Comment on lines -1456 to -1458
Copy link
Member Author

@qubvel qubvel Apr 18, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Not super related to the PR, but I removed redundant kwargs for get_text_features/get_image_features, which actually has no effect because we return a tensor (not Output) anyway, might be worth adding 🚨🚨🚨 for the PR

) -> torch.FloatTensor:
r"""
Returns:
Expand All @@ -1473,37 +1446,22 @@ def get_text_features(
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
>>> text_features = model.get_text_features(**inputs)
```"""
# Use ALIGN model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict

text_outputs = self.text_model(
text_outputs: BaseModelOutputWithPoolingAndCrossAttentions = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
output_attentions=False,
output_hidden_states=False,
Comment on lines +1456 to +1457
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

passing False explicitly here instead (see above comment)

)

last_hidden_state = text_outputs[0][:, 0, :]
last_hidden_state = text_outputs.last_hidden_state[:, 0, :]
text_features = self.text_projection(last_hidden_state)

return text_features

@add_start_docstrings_to_model_forward(ALIGN_VISION_INPUTS_DOCSTRING)
def get_image_features(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
def get_image_features(self, pixel_values: Optional[torch.FloatTensor] = None) -> torch.FloatTensor:
r"""
Returns:
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
Expand All @@ -1526,22 +1484,15 @@ def get_image_features(

>>> image_features = model.get_image_features(**inputs)
```"""
# Use ALIGN model's config for some fields (if specified) instead of those of vision & text components.
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict

vision_outputs = self.vision_model(
vision_outputs: BaseModelOutputWithPoolingAndNoAttention = self.vision_model(
pixel_values=pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
output_hidden_states=False,
)

image_features = vision_outputs[1] # pooled_output

image_features = vision_outputs.pooler_output
return image_features

@can_return_tuple
@add_start_docstrings_to_model_forward(ALIGN_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=AlignOutput, config_class=AlignConfig)
def forward(
Expand All @@ -1556,8 +1507,7 @@ def forward(
return_loss: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, AlignOutput]:
) -> AlignOutput:
r"""
Returns:

Expand Down Expand Up @@ -1587,15 +1537,13 @@ def forward(
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict

vision_outputs = self.vision_model(
vision_outputs: BaseModelOutputWithPoolingAndNoAttention = self.vision_model(
pixel_values=pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)

text_outputs = self.text_model(
text_outputs: BaseModelOutputWithPoolingAndCrossAttentions = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
Expand All @@ -1604,11 +1552,10 @@ def forward(
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)

image_embeds = vision_outputs[1]
text_embeds = text_outputs[0][:, 0, :]
image_embeds = vision_outputs.pooler_output
text_embeds = text_outputs.last_hidden_state[:, 0, :]
text_embeds = self.text_projection(text_embeds)

# normalized features
Expand All @@ -1623,10 +1570,6 @@ def forward(
if return_loss:
loss = align_loss(logits_per_text)

if not return_dict:
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
return ((loss,) + output) if loss is not None else output

return AlignOutput(
loss=loss,
logits_per_image=logits_per_image,
Expand Down
Loading