Skip to content

script for converting retinanet weights from trochvision #2233

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 0 additions & 13 deletions keras_hub/src/models/retinanet/retinanet_image_converter.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,16 +6,3 @@
@keras_hub_export("keras_hub.layers.RetinaNetImageConverter")
class RetinaNetImageConverter(ImageConverter):
backbone_cls = RetinaNetBackbone

def __init__(
self,
*args,
**kwargs,
):
# TODO: update presets and remove these old config options. They were
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Have we already updated the preset files? We don't need these shims anymore?

Copy link
Collaborator Author

@sineeli sineeli Apr 28, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Not yet, but with this we can update the files, I will do that. Yes we will not the extra params

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Probably good practice to ditch this change from this PR then. And add this change to the upcoming PR that updates the presets.

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I will update the presets as well as script is ready and I already generated presets just the uploading to Kaggle is pending

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Ok! I'll just wait for the preset update on this PR then, either way fine. (but let's avoid removing the compat hack before we add the new presets)

# never needed.
if "norm_mean" in kwargs:
kwargs["offset"] = [-x for x in kwargs.pop("norm_mean")]
if "norm_std" in kwargs:
kwargs["scale"] = [1.0 / x for x in kwargs.pop("norm_std")]
super().__init__(*args, **kwargs)
292 changes: 292 additions & 0 deletions tools/checkpoint_conversion/convert_retinanet_checkpoints.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,292 @@
"""Convert ViT checkpoints.

export KAGGLE_USERNAME=XXX
export KAGGLE_KEY=XXX

python tools/checkpoint_conversion/convert_retinanet_checkpoints.py \
--preset retinanet_resnet50_coco
"""

import os
import shutil

import keras
import numpy as np
import torch
from absl import app
from absl import flags
from keras import ops
from torchvision.models.detection.retinanet import (
RetinaNet_ResNet50_FPN_V2_Weights,
)
from torchvision.models.detection.retinanet import (
RetinaNet_ResNet50_FPN_Weights,
)
from torchvision.models.detection.retinanet import retinanet_resnet50_fpn
from torchvision.models.detection.retinanet import retinanet_resnet50_fpn_v2

from keras_hub.src.models.backbone import Backbone
from keras_hub.src.models.retinanet.retinanet_backbone import RetinaNetBackbone
from keras_hub.src.models.retinanet.retinanet_image_converter import (
RetinaNetImageConverter,
)
from keras_hub.src.models.retinanet.retinanet_object_detector import (
RetinaNetObjectDetector,
)
from keras_hub.src.models.retinanet.retinanet_object_detector_preprocessor import ( # noqa: E501
RetinaNetObjectDetectorPreprocessor,
)

FLAGS = flags.FLAGS

PRESET_MAP = {
"retinanet_resnet50_fpn_coco": RetinaNet_ResNet50_FPN_Weights.DEFAULT,
"retinanet_resnet50_fpn_v2_coco": RetinaNet_ResNet50_FPN_V2_Weights.DEFAULT,
}

flags.DEFINE_string(
"preset",
None,
f"Must be one of {','.join(PRESET_MAP.keys())}",
required=True,
)
flags.DEFINE_string(
"upload_uri",
None,
'Could be "kaggle://keras/{variant}/keras/{preset}"',
required=False,
)


def get_keras_backbone(use_p5=False):
image_encoder = Backbone.from_preset(
"resnet_50_imagenet", load_weights=False
)
backbone = RetinaNetBackbone(
image_encoder=image_encoder,
min_level=3,
max_level=7,
use_p5=use_p5,
)

return backbone


# Helper functions.
def port_weight(keras_variable, torch_tensor, hook_fn=None):
if hook_fn:
torch_tensor = hook_fn(torch_tensor, list(keras_variable.shape))
keras_variable.assign(torch_tensor)


def convert_image_encoder(state_dict, backbone):
def port_conv2d(keras_layer_name, torch_weight_prefix):
port_weight(
backbone.get_layer(keras_layer_name).kernel,
torch_tensor=state_dict[f"{torch_weight_prefix}.weight"],
hook_fn=lambda x, _: np.transpose(x, (2, 3, 1, 0)),
)

def port_batch_normalization(keras_layer_name, torch_weight_prefix):
port_weight(
backbone.get_layer(keras_layer_name).gamma,
torch_tensor=state_dict[f"{torch_weight_prefix}.weight"],
)
port_weight(
backbone.get_layer(keras_layer_name).beta,
torch_tensor=state_dict[f"{torch_weight_prefix}.bias"],
)
port_weight(
backbone.get_layer(keras_layer_name).moving_mean,
torch_tensor=state_dict[f"{torch_weight_prefix}.running_mean"],
)
port_weight(
backbone.get_layer(keras_layer_name).moving_variance,
torch_tensor=state_dict[f"{torch_weight_prefix}.running_var"],
)

block_type = backbone.block_type

# Stem
port_conv2d("conv1_conv", "backbone.body.conv1")
port_batch_normalization("conv1_bn", "backbone.body.bn1")

# Stages
num_stacks = len(backbone.stackwise_num_filters)
for stack_index in range(num_stacks):
for block_idx in range(backbone.stackwise_num_blocks[stack_index]):
keras_name = f"stack{stack_index}_block{block_idx}"
torch_name = f"backbone.body.layer{stack_index + 1}.{block_idx}"

if block_idx == 0 and (
block_type == "bottleneck_block" or stack_index > 0
):
port_conv2d(
f"{keras_name}_0_conv", f"{torch_name}.downsample.0"
)
port_batch_normalization(
f"{keras_name}_0_bn", f"{torch_name}.downsample.1"
)
port_conv2d(f"{keras_name}_1_conv", f"{torch_name}.conv1")
port_batch_normalization(f"{keras_name}_1_bn", f"{torch_name}.bn1")
port_conv2d(f"{keras_name}_2_conv", f"{torch_name}.conv2")
port_batch_normalization(f"{keras_name}_2_bn", f"{torch_name}.bn2")
if block_type == "bottleneck_block":
port_conv2d(f"{keras_name}_3_conv", f"{torch_name}.conv3")
port_batch_normalization(
f"{keras_name}_3_bn", f"{torch_name}.bn3"
)


def convert_fpn(state_dict, fpn_network):
def port_conv2d(kera_weight, torch_weight_prefix):
port_weight(
kera_weight.kernel,
torch_tensor=state_dict[f"{torch_weight_prefix}.weight"],
hook_fn=lambda x, _: np.transpose(x, (2, 3, 1, 0)),
)
port_weight(
kera_weight.bias,
torch_tensor=state_dict[f"{torch_weight_prefix}.bias"],
)

for level, layer in fpn_network.lateral_conv_layers.items():
idx = int(level[1])
port_conv2d(layer, f"backbone.fpn.inner_blocks.{idx - 3}.0")

for level, layer in fpn_network.output_conv_layers.items():
idx = int(level[1])
if "output" in layer.name:
port_conv2d(layer, f"backbone.fpn.layer_blocks.{idx - 3}.0")
if "coarser" in layer.name:
port_conv2d(layer, f"backbone.fpn.extra_blocks.p{idx}")


def convert_image_converter(torch_model):
image_mean = torch_model.transform.image_mean
image_std = torch_model.transform.image_std
resolution = torch_model.transform.min_size
return RetinaNetImageConverter(
image_size=(resolution, resolution),
pad_to_aspect_ratio=True,
crop_to_aspect_ratio=False,
scale=[1.0 / 255.0 / s for s in image_std],
offset=[-m / s for m, s in zip(image_mean, image_std)],
)


def convert_head_weights(state_dict, keras_model):
def port_conv2d(kera_weight, torch_weight_prefix):
port_weight(
kera_weight.kernel,
torch_tensor=state_dict[f"{torch_weight_prefix}.weight"],
hook_fn=lambda x, _: np.transpose(x, (2, 3, 1, 0)),
)
port_weight(
kera_weight.bias,
torch_tensor=state_dict[f"{torch_weight_prefix}.bias"],
)

for idx, layer in enumerate(keras_model.box_head.conv_layers):
port_conv2d(layer, f"head.regression_head.conv.{idx}.0")

port_conv2d(
keras_model.box_head.prediction_layer,
torch_weight_prefix="head.regression_head.bbox_reg",
)
for idx, layer in enumerate(keras_model.classification_head.conv_layers):
port_conv2d(layer, f"head.classification_head.conv.{idx}.0")

port_conv2d(
keras_model.classification_head.prediction_layer,
torch_weight_prefix="head.classification_head.cls_logits",
)


def convert_backbone_weights(state_dict, backbone):
# Convert ResNet50 image encoder
convert_image_encoder(state_dict, backbone.image_encoder)
# Convert FPN
convert_fpn(state_dict, backbone.feature_pyramid)


def main(_):
if FLAGS.preset not in PRESET_MAP.keys():
raise ValueError(
f"Invalid preset {FLAGS.preset}. Must be one "
f"of {','.join(PRESET_MAP.keys())}"
)
preset = FLAGS.preset
torch_preset = PRESET_MAP[preset]
if os.path.exists(preset):
shutil.rmtree(preset)
os.makedirs(preset)

print(f"🏃 Coverting {preset}")

# Load huggingface model.
if preset == "retinanet_resnet50_fpn_coco":
torch_model = retinanet_resnet50_fpn(weights=torch_preset)
torch_model.eval()
keras_backbone = get_keras_backbone()
elif preset == "retinanet_resnet50_fpn_v2_coco":
torch_model = retinanet_resnet50_fpn_v2(weights=torch_preset)
torch_model.eval()
keras_backbone = get_keras_backbone(use_p5=True)

state_dict = torch_model.state_dict()
print("✅ Torch and KerasHub model loaded.")

convert_backbone_weights(state_dict, keras_backbone)
print("✅ Backbone weights converted.")

keras_image_converter = convert_image_converter(torch_model)
print("✅ Loaded image converter")

preprocessor = RetinaNetObjectDetectorPreprocessor(
image_converter=keras_image_converter
)

keras_model = RetinaNetObjectDetector(
backbone=keras_backbone,
num_classes=len(torch_preset.meta["categories"]),
preprocessor=preprocessor,
)

convert_head_weights(state_dict, keras_model)
print("✅ Loaded head weights")

filepath = keras.utils.get_file(
origin="http://farm4.staticflickr.com/3755/10245052896_958cbf4766_z.jpg"
)
image = keras.utils.load_img(filepath)
image = ops.cast(image, "float32")
image = ops.expand_dims(image, axis=0)
keras_image = preprocessor(image)
torch_image = ops.transpose(keras_image, axes=(0, 3, 1, 2))
torch_image = ops.convert_to_numpy(torch_image)
torch_image = torch.from_numpy(torch_image)

keras_outputs = keras_model(keras_image)
with torch.no_grad():
torch_mid_outputs = list(torch_model.backbone(torch_image).values())
torch_outputs = torch_model.head(torch_mid_outputs)

bbox_diff = np.mean(
np.abs(
ops.convert_to_numpy(keras_outputs["bbox_regression"])
- torch_outputs["bbox_regression"].numpy()
)
)
cls_logits_diff = np.mean(
np.abs(
ops.convert_to_numpy(keras_outputs["cls_logits"])
- torch_outputs["cls_logits"].numpy()
)
)
print("🔶 Modeling Bounding Box Logits difference:", bbox_diff)
print("🔶 Modeling Class Logits difference:", cls_logits_diff)


if __name__ == "__main__":
app.run(main)
Loading