-
Notifications
You must be signed in to change notification settings - Fork 0
[MLIR][LLVM] Move the LLVM inliner interface into a separate file. #11
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: byval
Are you sure you want to change the base?
Conversation
The revision adds the llvm.experimental.noalias.scope.decl intrinsic to the LLVM dialect and updates the import and export accordingly. Reviewed By: Dinistro Differential Revision: https://reviews.llvm.org/D146504
Prior to this the only check was that we did not print this message when reading registers that should exist. I thought there was an indentation bug here so I wrote a test for it. There is not, but we could do with the coverage anyway. Reviewed By: rupprecht Differential Revision: https://reviews.llvm.org/D145940
Differential Revision: https://reviews.llvm.org/D146527
Clarify that this is only about immediate undefined behavior, not about undef or poison.
Fix assumption on memref element type being int/float in memref elt size related method and affine data copy generate. Fixes llvm#61310 Differential Revision: https://reviews.llvm.org/D146495
LoopPredication may introduce undefined behavior.
This avoids having to cast the result of the builder to GetElementPtrInst.
The new IR with And removes a use of the input variable, which is better for analysis. Fix llvm#60818 Reviewed By: nikic, spatel Differential Revision: https://reviews.llvm.org/D145846
Differential revision: https://reviews.llvm.org/D146558
…ctDims and projectSymbols The default behavior of getProjectedMap may be surprising as it implicitly compresses the dims and the unused symbols. Make these explicit in the API and refactor to more idiomatic implementations with better reuse. Differential Revision: https://reviews.llvm.org/D146611
8ce6dac
to
c9d63ec
Compare
c9d63ec
to
354220e
Compare
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
What about LLVMInlinerInterface.cpp? We could also put it into LLVMInterfaces.cpp but then you may not have the desired granularity for the debug message generation.
@@ -0,0 +1,251 @@ | |||
//===- LLVMInterfaces.cpp - LLVM Interfaces ---------------------*- C++ -*-===// |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
copy pasta:)
@@ -0,0 +1,27 @@ | |||
//===- TypeDetail.h - Details of MLIR LLVM dialect types --------*- C++ -*-===// |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Same :)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
That looks fine to me.
This flag instructs flang-new to use the new HLFIR lowering. It is marked as experimental and not included in --help. This was added to make it more convenient to test the performance of code generated by the HLFIR lowering. Extra diffs are from running clang-format on CLOptions.inc (which was being forced by CI). Differential Revision: https://reviews.llvm.org/D146278
Add some documentation on the flags and the process by which clang identifies the headers and libraries for the Windows environment. It should identify the flags and their interactions as well as the order in which the various sources of information are consulted. Differential Revision: https://reviews.llvm.org/D146165 Reviewed By: hans, mstorjo
Adds a pair of options for Dexter that allow the user to specify a timeout duration. These options are: * --timeout-total: Times out if the total run-time of the debugger session exceeds <timeout-total> seconds. * --timeout-breakpoint: Times out if the time without hitting a breakpoint exceeds <timeout-breakpoint> seconds. Reviewed By: Orlando Differential Revision: https://reviews.llvm.org/D145063
Support for building, printing, and displaying CallsiteContextGraph which represents the MemProf metadata contexts. Uses CRTP to enable support for both IR (regular LTO) and summary (ThinLTO). This patch includes the support for building it in regular LTO mode (from memprof and callsite metadata), and the next patch will add the handling for building it from ThinLTO summaries. Also includes support for dumping the graph to text and to dot files. Follow-on patches will contain the support for cloning on the graph and in the IR. The graph represents the call contexts in all memprof metadata on allocation calls, with nodes for the allocations themselves, as well as for the calls in each context. The graph is initially built from the allocation memprof metadata (or summary) MIBs. It is then updated to match calls with callsite metadata onto the nodes, updating it to reflect any inlining performed on those calls. Each MIB (representing an allocation's call context with allocation behavior) is assigned a unique context id during the graph build. The edges and nodes in the graph are decorated with the context ids they carry. This is used to correctly update the graph when cloning is performed so that we can uniquify the context for a single (possibly cloned) allocation. Depends on D140786. Differential Revision: https://reviews.llvm.org/D140908
A DebugVariableAggregate is a DebugVariable that discards FragmentInfo; it represents a whole variable instance. Reviewed By: StephenTozer Differential Revision: https://reviews.llvm.org/D146298
updateForDeletedStore updates the assignment tracking debug info for a store that is about to be deleted by mem2reg. For each variable backed by the target alloca, if a dbg.assign exists it is kept (well - it's downgraded to a dbg.value). A dbg.value is inserted if there's not a linked dbg.assign for a variable which is backed by the target alloca. This patch fixes a bug whereby a store with a linked dbg.assign that describes a fragment different to the one linked to the alloca was not counted for the variable, leading to both keeping the dbg.assign (downgrading it) and inserting a new dbg.value. Reviewed By: StephenTozer Differential Revision: https://reviews.llvm.org/D146299
Report a change when removing a true/false assume. Fixes llvm#61574.
Support inlining of function calls with the byval attribute on function arguments by copying the pointee into a newly alloca'ed pointer at the callsite before inlining. The alignment attribute is not yet taken into account. Reviewed By: ftynse, gysit Differential Revision: https://reviews.llvm.org/D146616
354220e
to
ba30cf4
Compare
This change prevents rare deadlocks observed for specific macOS/iOS GUI applications which issue many `dlopen()` calls from multiple different threads at startup and where TSan finds and reports a race during startup. Providing a reliable test for this has been deemed infeasible. Although I've only observed this deadlock on Apple platforms, conceptually the cause is not confined to Apple code so the fix lives in platform-independent code. Deadlock scenario: ``` Thread 2 | Thread 4 ReportRace() | Lock internal TSan mutexes | &ctx->slot_mtx | | dlopen() interceptor | OnLibraryLoaded() | MemoryMappingLayout::DumpListOfModules() | calls dyld API, which takes internal lock | lock() interceptor | TSan tries to take internal mutexes again | &ctx->slot_mtx call into symbolizer | MemoryMappingLayout::DumpListOfModules() calls dyld API, which hangs on trying to take lock ``` Resulting in: * Thread 2 has internal TSan mutex, blocked on dyld lock * Thread 4 has dyld lock, blocked on internal TSan mutex The fix prevents this situation by not intercepting any of the calls originating from `MemoryMappingLayout::DumpListOfModules()`. Stack traces for deadlock between ReportRace() and dlopen() interceptor: ``` thread #2, queue = 'com.apple.root.default-qos' frame #0: libsystem_kernel.dylib frame #1: libclang_rt.tsan_osx_dynamic.dylib`::wrap_os_unfair_lock_lock_with_options(lock=<unavailable>, options=<unavailable>) at tsan_interceptors_mac.cpp:306:3 frame #2: dyld`dyld4::RuntimeLocks::withLoadersReadLock(this=0x000000016f21b1e0, work=0x00000001814523c0) block_pointer) at DyldRuntimeState.cpp:227:28 frame #3: dyld`dyld4::APIs::_dyld_get_image_header(this=0x0000000101012a20, imageIndex=614) at DyldAPIs.cpp:240:11 frame #4: libclang_rt.tsan_osx_dynamic.dylib`__sanitizer::MemoryMappingLayout::CurrentImageHeader(this=<unavailable>) at sanitizer_procmaps_mac.cpp:391:35 frame #5: libclang_rt.tsan_osx_dynamic.dylib`__sanitizer::MemoryMappingLayout::Next(this=0x000000016f2a2800, segment=0x000000016f2a2738) at sanitizer_procmaps_mac.cpp:397:51 frame #6: libclang_rt.tsan_osx_dynamic.dylib`__sanitizer::MemoryMappingLayout::DumpListOfModules(this=0x000000016f2a2800, modules=0x00000001011000a0) at sanitizer_procmaps_mac.cpp:460:10 frame #7: libclang_rt.tsan_osx_dynamic.dylib`__sanitizer::ListOfModules::init(this=0x00000001011000a0) at sanitizer_mac.cpp:610:18 frame #8: libclang_rt.tsan_osx_dynamic.dylib`__sanitizer::Symbolizer::FindModuleForAddress(unsigned long) [inlined] __sanitizer::Symbolizer::RefreshModules(this=0x0000000101100078) at sanitizer_symbolizer_libcdep.cpp:185:12 frame #9: libclang_rt.tsan_osx_dynamic.dylib`__sanitizer::Symbolizer::FindModuleForAddress(this=0x0000000101100078, address=6465454512) at sanitizer_symbolizer_libcdep.cpp:204:5 frame #10: libclang_rt.tsan_osx_dynamic.dylib`__sanitizer::Symbolizer::SymbolizePC(this=0x0000000101100078, addr=6465454512) at sanitizer_symbolizer_libcdep.cpp:88:15 frame #11: libclang_rt.tsan_osx_dynamic.dylib`__tsan::SymbolizeCode(addr=6465454512) at tsan_symbolize.cpp:106:35 frame #12: libclang_rt.tsan_osx_dynamic.dylib`__tsan::SymbolizeStack(trace=StackTrace @ 0x0000600002d66d00) at tsan_rtl_report.cpp:112:28 frame #13: libclang_rt.tsan_osx_dynamic.dylib`__tsan::ScopedReportBase::AddMemoryAccess(this=0x000000016f2a2a90, addr=4381057136, external_tag=<unavailable>, s=<unavailable>, tid=<unavailable>, stack=<unavailable>, mset=0x00000001012fc310) at tsan_rtl_report.cpp:190:16 frame #14: libclang_rt.tsan_osx_dynamic.dylib`__tsan::ReportRace(thr=0x00000001012fc000, shadow_mem=0x000008020a4340e0, cur=<unavailable>, old=<unavailable>, typ0=1) at tsan_rtl_report.cpp:795:9 frame #15: libclang_rt.tsan_osx_dynamic.dylib`__tsan::DoReportRace(thr=0x00000001012fc000, shadow_mem=0x000008020a4340e0, cur=Shadow @ x22, old=Shadow @ 0x0000600002d6b4f0, typ=1) at tsan_rtl_access.cpp:166:3 frame #16: libclang_rt.tsan_osx_dynamic.dylib`::__tsan_read8(void *) at tsan_rtl_access.cpp:220:5 frame #17: libclang_rt.tsan_osx_dynamic.dylib`::__tsan_read8(void *) [inlined] __tsan::MemoryAccess(thr=0x00000001012fc000, pc=<unavailable>, addr=<unavailable>, size=8, typ=1) at tsan_rtl_access.cpp:442:3 frame llvm#18: libclang_rt.tsan_osx_dynamic.dylib`::__tsan_read8(addr=<unavailable>) at tsan_interface.inc:34:3 <call into TSan from from instrumented code> thread #4, queue = 'com.apple.dock.fullscreen' frame #0: libsystem_kernel.dylib frame #1: libclang_rt.tsan_osx_dynamic.dylib`__sanitizer::FutexWait(p=<unavailable>, cmp=<unavailable>) at sanitizer_mac.cpp:540:3 frame #2: libclang_rt.tsan_osx_dynamic.dylib`__sanitizer::Semaphore::Wait(this=<unavailable>) at sanitizer_mutex.cpp:35:7 frame #3: libclang_rt.tsan_osx_dynamic.dylib`__sanitizer::Mutex::Lock(this=0x0000000102992a80) at sanitizer_mutex.h:196:18 frame #4: libclang_rt.tsan_osx_dynamic.dylib`__tsan::ScopedInterceptor::~ScopedInterceptor() [inlined] __sanitizer::GenericScopedLock<__sanitizer::Mutex>::GenericScopedLock(this=<unavailable>, mu=0x0000000102992a80) at sanitizer_mutex.h:383:10 frame #5: libclang_rt.tsan_osx_dynamic.dylib`__tsan::ScopedInterceptor::~ScopedInterceptor() [inlined] __sanitizer::GenericScopedLock<__sanitizer::Mutex>::GenericScopedLock(this=<unavailable>, mu=0x0000000102992a80) at sanitizer_mutex.h:382:77 frame #6: libclang_rt.tsan_osx_dynamic.dylib`__tsan::ScopedInterceptor::~ScopedInterceptor() at tsan_rtl.h:708:10 frame #7: libclang_rt.tsan_osx_dynamic.dylib`__tsan::ScopedInterceptor::~ScopedInterceptor() [inlined] __tsan::TryTraceFunc(thr=0x000000010f084000, pc=0) at tsan_rtl.h:751:7 frame #8: libclang_rt.tsan_osx_dynamic.dylib`__tsan::ScopedInterceptor::~ScopedInterceptor() [inlined] __tsan::FuncExit(thr=0x000000010f084000) at tsan_rtl.h:798:7 frame #9: libclang_rt.tsan_osx_dynamic.dylib`__tsan::ScopedInterceptor::~ScopedInterceptor(this=0x000000016f3ba280) at tsan_interceptors_posix.cpp:300:5 frame #10: libclang_rt.tsan_osx_dynamic.dylib`__tsan::ScopedInterceptor::~ScopedInterceptor(this=<unavailable>) at tsan_interceptors_posix.cpp:293:41 frame #11: libclang_rt.tsan_osx_dynamic.dylib`::wrap_os_unfair_lock_lock_with_options(lock=0x000000016f21b1e8, options=OS_UNFAIR_LOCK_NONE) at tsan_interceptors_mac.cpp:310:1 frame #12: dyld`dyld4::RuntimeLocks::withLoadersReadLock(this=0x000000016f21b1e0, work=0x00000001814525d4) block_pointer) at DyldRuntimeState.cpp:227:28 frame #13: dyld`dyld4::APIs::_dyld_get_image_vmaddr_slide(this=0x0000000101012a20, imageIndex=412) at DyldAPIs.cpp:273:11 frame #14: libclang_rt.tsan_osx_dynamic.dylib`__sanitizer::MemoryMappingLayout::Next(__sanitizer::MemoryMappedSegment*) at sanitizer_procmaps_mac.cpp:286:17 frame #15: libclang_rt.tsan_osx_dynamic.dylib`__sanitizer::MemoryMappingLayout::Next(this=0x000000016f3ba560, segment=0x000000016f3ba498) at sanitizer_procmaps_mac.cpp:432:15 frame #16: libclang_rt.tsan_osx_dynamic.dylib`__sanitizer::MemoryMappingLayout::DumpListOfModules(this=0x000000016f3ba560, modules=0x000000016f3ba618) at sanitizer_procmaps_mac.cpp:460:10 frame #17: libclang_rt.tsan_osx_dynamic.dylib`__sanitizer::ListOfModules::init(this=0x000000016f3ba618) at sanitizer_mac.cpp:610:18 frame llvm#18: libclang_rt.tsan_osx_dynamic.dylib`__sanitizer::LibIgnore::OnLibraryLoaded(this=0x0000000101f3aa40, name="<some library>") at sanitizer_libignore.cpp:54:11 frame llvm#19: libclang_rt.tsan_osx_dynamic.dylib`::wrap_dlopen(filename="<some library>", flag=<unavailable>) at sanitizer_common_interceptors.inc:6466:3 <library code> ``` rdar://106766395 Differential Revision: https://reviews.llvm.org/D146593
A fully fledged LLVM inliner will require a lot of logic. Since `LLVMDialect.cpp` is large enough as it is, preemptively outline the inlining logic into a separate `.cpp` file. This will also allow us to add a `DEBUG_TYPE` for debugging the inliner. The name `LLVMInlining` was chosen over `LLVMInlinerInterface` to keep the option open for exposing inlining functionality even when not invoked through the `DialectInlinerInterface`. Depends on D146616 Differential Revision: https://reviews.llvm.org/D146628
ba30cf4
to
76f2608
Compare
This reverts commit f8a36d8. I believe this is causing an assertion failure on the sanitizer-x86_64-linux buildbot: clang++: /b/sanitizer-x86_64-linux/build/llvm-project/llvm/include/llvm/Support/Casting.h:578: decltype(auto) llvm::cast(From *) [To = llvm::BinaryOperator, From = llvm::Value]: Assertion `isa<To>(Val) && "cast<Ty>() argument of incompatible type!"' failed. #10 0x000055bdd7e82408 canonicalizeLogicFirst(llvm::BinaryOperator&, llvm::IRBuilder<llvm::TargetFolder, llvm::IRBuilderCallbackInserter>&) /b/sanitizer-x86_64-linux/build/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp:2131:5 #11 0x000055bdd7e80183 llvm::InstCombinerImpl::visitAnd(llvm::BinaryOperator&) /b/sanitizer-x86_64-linux/build/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp:2661:20 Likely the code is encountering a constant expression in a case it didn't before.
This has been flaky for a while, for example https://lab.llvm.org/buildbot/#/builders/96/builds/50350 ``` Command Output (stdout): -- lldb version 18.0.0git (https://github.com/llvm/llvm-project.git revision 3974d89) clang revision 3974d89 llvm revision 3974d89 "can't evaluate expressions when the process is running." ``` ``` PLEASE submit a bug report to https://github.com/llvm/llvm-project/issues/ and include the crash backtrace. #0 0x0000ffffa46191a0 llvm::sys::PrintStackTrace(llvm::raw_ostream&, int) (/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/build/lib/python3.8/site-packages/lldb/_lldb.cpython-38-aarch64-linux-gnu.so+0x529a1a0) #1 0x0000ffffa4617144 llvm::sys::RunSignalHandlers() (/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/build/lib/python3.8/site-packages/lldb/_lldb.cpython-38-aarch64-linux-gnu.so+0x5298144) #2 0x0000ffffa46198d0 SignalHandler(int) (/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/build/lib/python3.8/site-packages/lldb/_lldb.cpython-38-aarch64-linux-gnu.so+0x529a8d0) #3 0x0000ffffab25b7dc (linux-vdso.so.1+0x7dc) #4 0x0000ffffab13d050 /build/glibc-Q8DG8B/glibc-2.31/string/../sysdeps/aarch64/multiarch/memcpy_advsimd.S:92:0 #5 0x0000ffffa446f420 lldb_private::process_gdb_remote::GDBRemoteRegisterContext::PrivateSetRegisterValue(unsigned int, llvm::ArrayRef<unsigned char>) (/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/build/lib/python3.8/site-packages/lldb/_lldb.cpython-38-aarch64-linux-gnu.so+0x50f0420) #6 0x0000ffffa446f7b8 lldb_private::process_gdb_remote::GDBRemoteRegisterContext::GetPrimordialRegister(lldb_private::RegisterInfo const*, lldb_private::process_gdb_remote::GDBRemoteCommunicationClient&) (/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/build/lib/python3.8/site-packages/lldb/_lldb.cpython-38-aarch64-linux-gnu.so+0x50f07b8) #7 0x0000ffffa446f308 lldb_private::process_gdb_remote::GDBRemoteRegisterContext::ReadRegisterBytes(lldb_private::RegisterInfo const*) (/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/build/lib/python3.8/site-packages/lldb/_lldb.cpython-38-aarch64-linux-gnu.so+0x50f0308) #8 0x0000ffffa446ec1c lldb_private::process_gdb_remote::GDBRemoteRegisterContext::ReadRegister(lldb_private::RegisterInfo const*, lldb_private::RegisterValue&) (/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/build/lib/python3.8/site-packages/lldb/_lldb.cpython-38-aarch64-linux-gnu.so+0x50efc1c) #9 0x0000ffffa412eaa4 lldb_private::RegisterContext::ReadRegisterAsUnsigned(lldb_private::RegisterInfo const*, unsigned long) (/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/build/lib/python3.8/site-packages/lldb/_lldb.cpython-38-aarch64-linux-gnu.so+0x4dafaa4) #10 0x0000ffffa420861c ReadLinuxProcessAddressMask(std::shared_ptr<lldb_private::Process>, llvm::StringRef) (/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/build/lib/python3.8/site-packages/lldb/_lldb.cpython-38-aarch64-linux-gnu.so+0x4e8961c) #11 0x0000ffffa4208430 ABISysV_arm64::FixCodeAddress(unsigned long) (/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/build/lib/python3.8/site-packages/lldb/_lldb.cpython-38-aarch64-linux-gnu.so+0x4e89430) ``` Judging by the backtrace something is trying to read the pointer authentication address/code mask registers. This explains why I've not seen this issue locally, as the buildbot runs on Graviton 3 with has the pointer authentication extension. I will try to reproduce, fix and re-enable the test.
A fully fledged LLVM inliner will require a lot of logic. Since LLVMDialect.cpp is large enough as it is, preemptively outline the inlining logic into a separate .cpp file.