-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathsample.py
68 lines (56 loc) · 1.77 KB
/
sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import hydra
import torch
import torch.nn as nn
from omegaconf import DictConfig, OmegaConf
from dnadiffusion.utils.sample_util import create_sample
def sample(
data: dict,
model: nn.Module,
checkpoint_path: str,
sample_batch_size: int,
number_of_samples: int,
) -> None:
print(data)
"""numeric_to_tag_dict, cell_num_list, cell_list = (
data["numeric_to_tag"],
data["cell_types"],
list(data["tag_to_numeric"].keys()),
)
"""
numeric_to_tag_dict = data[-1]
cell_num_list = data[-2]
# Load checkpoint
print("Loading checkpoint")
checkpoint_dict = torch.load(checkpoint_path)
model.load_state_dict(checkpoint_dict["model"])
# Send model to device
print("Sending model to device")
model = model.to("cuda")
for i in cell_num_list:
print(f"Generating {number_of_samples} samples for cell {numeric_to_tag_dict[i]}")
create_sample(
model,
cell_types=cell_num_list,
sample_bs=sample_batch_size,
conditional_numeric_to_tag=numeric_to_tag_dict,
number_of_samples=number_of_samples,
group_number=i,
cond_weight_to_metric=1.0,
save_timesteps=False,
save_dataframe=True,
generate_attention_maps=False,
)
@hydra.main(config_path="configs", config_name="sample", version_base="1.3")
def main(cfg: DictConfig) -> None:
print(OmegaConf.to_yaml(cfg))
sampling_setup = {**cfg.sampling}
model = hydra.utils.instantiate(cfg.model)
data = hydra.utils.instantiate(cfg.data)
diffusion = hydra.utils.instantiate(cfg.diffusion, model=model)
sample(
data=data,
model=diffusion,
**sampling_setup,
)
if __name__ == "__main__":
main()