-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathtrain.py
158 lines (134 loc) · 5.21 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os
import hydra
import torch
import wandb
from omegaconf import DictConfig, OmegaConf
from torch import nn
from torch.distributed.checkpoint.state_dict import get_state_dict
from torch.nn.parallel import DistributedDataParallel as DDP
from tqdm import tqdm
from dnadiffusion.data.dataloader import get_dataloader
from dnadiffusion.utils.sample_util import create_sample
from dnadiffusion.utils.train_util import distributed_setup, init_wandb, train_step, val_step
def train(
distributed: bool,
precision: str,
num_workers: int,
pin_memory: bool,
model: nn.Module,
optimizer: torch.optim.Optimizer,
data: tuple,
batch_size: int,
sample_batch_size: int,
log_step: int,
num_epochs: int,
min_epochs: int,
patience: int,
sample_epoch: int,
number_of_samples: int,
use_wandb: bool,
) -> None:
if distributed:
local_rank = int(os.environ["LOCAL_RANK"])
rank, device, local_batch_size = distributed_setup(batch_size)
device = f"cuda:{local_rank}"
torch.cuda.set_device(device)
model = DDP(model.to(device), device_ids=[rank])
rank_0 = rank == 0
else:
device = "cuda" if torch.cuda.is_available() else "cpu"
model = model.to(device)
rank_0 = True
local_batch_size = batch_size
# Data
train_data, val_data, cell_num_list, numeric_to_tag_dict = data
train_dl, train_sampler = get_dataloader(train_data, local_batch_size, num_workers, distributed, pin_memory)
val_dl, _ = get_dataloader(val_data, local_batch_size, num_workers, distributed, pin_memory)
# Metrics
if rank_0 == 0 and use_wandb:
init_wandb()
global_step = 0
model.train()
# Early stopping
best_val_loss = float("inf")
patience_counter = 0
best_model_state = None
checkpoint_files = []
for epoch in tqdm(range(num_epochs), disable=not rank_0):
if distributed:
train_sampler.set_epoch(epoch)
for x, y in train_dl:
loss = train_step(x, y, model, optimizer, device, precision)
global_step += 1
if rank_0 == 0 and global_step % log_step == 0 and use_wandb:
wandb.log({"loss": loss, "epoch": epoch}, step=global_step)
val_losses = []
for x, y in val_dl:
val_loss = val_step(x, y, model, device, precision)
val_losses.append(val_loss)
avg_val_loss = sum(val_losses) / len(val_losses) if val_losses else float("inf")
# print(f"Epoch: {epoch}, Train Loss: {loss}, Val Loss: {avg_val_loss}")
if rank_0 == 0 and use_wandb:
wandb.log({"loss": loss, "val_loss": avg_val_loss, "epoch": epoch}, step=global_step)
if avg_val_loss < best_val_loss:
best_val_loss = avg_val_loss
patience_counter = 0
if distributed:
best_model_state, best_optimizer_state = get_state_dict(model, optimizer)
else:
best_model_state = model.state_dict()
best_optimizer_state = optimizer.state_dict()
if rank_0:
checkpoint_dict = {
"model": best_model_state,
"optimizer": best_optimizer_state,
"epoch": epoch,
"global_step": global_step,
"val_loss": best_val_loss,
}
checkpoint_file = f"checkpoints/model_epoch{epoch}_step{global_step}_valloss_{best_val_loss:2f}.pt"
torch.save(
checkpoint_dict,
checkpoint_file,
)
checkpoint_files.append(checkpoint_file)
if len(checkpoint_files) > 2:
os.remove(checkpoint_files.pop(0))
else:
patience_counter += 1
if epoch >= min_epochs and patience_counter >= patience:
print(
f"Early stopping at epoch {epoch}, Best val loss: {best_val_loss} achieved at epoch {epoch - patience_counter}"
)
break
if rank_0 == 0 and (epoch + 1) % sample_epoch == 0:
# for i in data["cell_types"]:
for i in cell_num_list:
create_sample(
model,
cell_types=cell_num_list,
sample_bs=sample_batch_size,
conditional_numeric_to_tag=numeric_to_tag_dict,
number_of_samples=number_of_samples,
group_number=i,
cond_weight_to_metric=1,
save_timesteps=False,
save_dataframe=True,
generate_attention_maps=False,
)
@hydra.main(config_path="configs", config_name="train", version_base="1.3")
def main(cfg: DictConfig) -> None:
print(OmegaConf.to_yaml(cfg))
train_setup = {**cfg.training}
model = hydra.utils.instantiate(cfg.model)
data = hydra.utils.instantiate(cfg.data)
optimizer = hydra.utils.instantiate(cfg.optimizer, model.parameters())
diffusion = hydra.utils.instantiate(cfg.diffusion, model=model)
train(
**train_setup,
model=diffusion,
optimizer=optimizer,
data=data,
)
if __name__ == "__main__":
main()