Skip to content

Add support for encoder embedding models #19988

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 1 commit into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 5 additions & 11 deletions tests/models/language/pooling/test_embedding.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,19 +38,13 @@ def v1(run_with_both_engines):
marks=[pytest.mark.skip_v0, pytest.mark.cpu_model]),
# [Encoder-only]
pytest.param("BAAI/bge-base-en-v1.5",
marks=[
pytest.mark.core_model, pytest.mark.cpu_model,
pytest.mark.skip_v1
]),
pytest.param("sentence-transformers/all-MiniLM-L12-v2",
marks=[pytest.mark.skip_v1]),
pytest.param("intfloat/multilingual-e5-small",
marks=[pytest.mark.skip_v1]),
marks=[pytest.mark.core_model, pytest.mark.cpu_model]),
pytest.param("sentence-transformers/all-MiniLM-L12-v2"),
pytest.param("intfloat/multilingual-e5-small"),
pytest.param("Alibaba-NLP/gte-Qwen2-1.5B-instruct",
marks=[pytest.mark.skip_v1]),
marks=[pytest.mark.skip_v0]),
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

medium

Consider removing the skip mark for v0 tests, as it seems the models are now supported in both engines.

# [Cross-Encoder]
pytest.param("sentence-transformers/stsb-roberta-base-v2",
marks=[pytest.mark.skip_v1]),
pytest.param("sentence-transformers/stsb-roberta-base-v2"),
],
)
def test_models(
Expand Down
8 changes: 8 additions & 0 deletions tests/models/language/pooling/test_jina.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,14 @@
]


@pytest.fixture(autouse=True)
def v1(run_with_both_engines):
# Simple autouse wrapper to run both engines for each test
# This can be promoted up to conftest.py to run for every
# test in a package
pass


@pytest.mark.parametrize("model_info", EMBEDDING_MODELS)
def test_embed_models_mteb(hf_runner, vllm_runner,
model_info: EmbedModelInfo) -> None:
Expand Down
9 changes: 9 additions & 0 deletions tests/models/language/pooling/test_scoring.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,15 @@
"The capital of Germany is Berlin.",
]


@pytest.fixture(autouse=True)
def v1(run_with_both_engines):
# Simple autouse wrapper to run both engines for each test
# This can be promoted up to conftest.py to run for every
# test in a package
pass


DTYPE = "half"


Expand Down
2 changes: 1 addition & 1 deletion tests/v1/core/test_kv_cache_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -916,4 +916,4 @@ def test_get_kv_cache_config():
],
kv_cache_groups=[
KVCacheGroupSpec(["layer_1", "layer_2"], new_kv_cache_spec())
])
])
5 changes: 5 additions & 0 deletions vllm/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -716,6 +716,11 @@ def _init_pooler_config(self) -> Optional["PoolerConfig"]:
self.override_pooler_config = PoolerConfig(
**self.override_pooler_config)

# WIP: currently cuda graphs are not working for encoder models.
logger.warning("CUDA graph is not supported for pooling yet, "
"fallback to the eager mode.")
self.enforce_eager = True
Comment on lines +720 to +722
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

medium

This warning message and the subsequent setting of self.enforce_eager could be made conditional on the specific model architecture or a more general flag that indicates whether the model is an encoder model. This would avoid unnecessary warnings and eager mode enforcement for models that might not have this issue.

if self.runner_type == "pooling":
            # WIP: currently cuda graphs are not working for encoder models.
            logger.warning("CUDA graph is not supported for pooling yet, "
                           "fallback to the eager mode.")
            self.enforce_eager = True


pooler_config = self.override_pooler_config or PoolerConfig()

base_config = get_pooling_config(self.model, self.revision)
Expand Down
3 changes: 2 additions & 1 deletion vllm/engine/arg_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -1664,7 +1664,8 @@

if (self.max_num_seqs is None
and usage_context in default_max_num_seqs):
self.max_num_seqs = default_max_num_seqs[usage_context]
self.max_num_seqs = min(default_max_num_seqs[usage_context],

Check failure on line 1667 in vllm/engine/arg_utils.py

View workflow job for this annotation

GitHub Actions / pre-commit

Value of type variable "SupportsRichComparisonT" of "min" cannot be "int | None" [type-var]

Check failure on line 1667 in vllm/engine/arg_utils.py

View workflow job for this annotation

GitHub Actions / pre-commit

Value of type variable "SupportsRichComparisonT" of "min" cannot be "int | None" [type-var]

Check failure on line 1667 in vllm/engine/arg_utils.py

View workflow job for this annotation

GitHub Actions / pre-commit

Value of type variable "SupportsRichComparisonT" of "min" cannot be "int | None" [type-var]

Check failure on line 1667 in vllm/engine/arg_utils.py

View workflow job for this annotation

GitHub Actions / pre-commit

Value of type variable "SupportsRichComparisonT" of "min" cannot be "int | None" [type-var]

Check failure on line 1667 in vllm/engine/arg_utils.py

View workflow job for this annotation

GitHub Actions / pre-commit

Value of type variable "SupportsRichComparisonT" of "min" cannot be "int | None" [type-var]

Check failure on line 1667 in vllm/engine/arg_utils.py

View workflow job for this annotation

GitHub Actions / pre-commit

Value of type variable "SupportsRichComparisonT" of "min" cannot be "int | None" [type-var]

Check failure on line 1667 in vllm/engine/arg_utils.py

View workflow job for this annotation

GitHub Actions / pre-commit

Value of type variable "SupportsRichComparisonT" of "min" cannot be "Optional[int]" [type-var]

Check failure on line 1667 in vllm/engine/arg_utils.py

View workflow job for this annotation

GitHub Actions / pre-commit

Value of type variable "SupportsRichComparisonT" of "min" cannot be "Optional[int]" [type-var]

Check failure on line 1667 in vllm/engine/arg_utils.py

View workflow job for this annotation

GitHub Actions / pre-commit

Value of type variable "SupportsRichComparisonT" of "min" cannot be "Optional[int]" [type-var]

Check failure on line 1667 in vllm/engine/arg_utils.py

View workflow job for this annotation

GitHub Actions / pre-commit

Value of type variable "SupportsRichComparisonT" of "min" cannot be "Optional[int]" [type-var]
self.max_num_batched_tokens)

logger.debug("Setting max_num_seqs to %d for %s usage context.",
self.max_num_seqs, use_context_value)
Expand Down
22 changes: 9 additions & 13 deletions vllm/model_executor/models/bert.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,6 @@
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, PoolerConfig, VllmConfig
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.forward_context import get_forward_context
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
QKVParallelLinear,
Expand All @@ -28,7 +27,7 @@
from vllm.transformers_utils.config import (
get_cross_encoder_activation_function)

from .interfaces import SupportsCrossEncoding, SupportsQuant, SupportsV0Only
from .interfaces import SupportsCrossEncoding, SupportsQuant
from .utils import WeightsMapper, maybe_prefix


Expand Down Expand Up @@ -57,7 +56,6 @@ def __init__(self, config: BertConfig):
def forward(
self,
input_ids: torch.Tensor,
seq_lens: torch.Tensor,
position_ids: torch.Tensor,
token_type_ids: Optional[torch.Tensor] = None,
) -> torch.Tensor:
Expand Down Expand Up @@ -342,13 +340,9 @@ def forward(
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
attn_metadata = get_forward_context().attn_metadata
assert hasattr(attn_metadata, "seq_lens_tensor")
hidden_states = self.embeddings(
input_ids=input_ids,
seq_lens=attn_metadata.seq_lens_tensor,
position_ids=position_ids,
token_type_ids=token_type_ids)
hidden_states = self.embeddings(input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids)
return self.encoder(hidden_states)

def load_weights(self, weights: Iterable[tuple[str,
Expand Down Expand Up @@ -388,7 +382,7 @@ def load_weights(self, weights: Iterable[tuple[str,
return loaded_params


class BertEmbeddingModel(nn.Module, SupportsV0Only, SupportsQuant):
class BertEmbeddingModel(nn.Module, SupportsQuant):
"""A model that uses Bert to provide embedding functionalities.

This class encapsulates the BertModel and provides an interface for
Expand All @@ -411,11 +405,13 @@ def forward(
self,
input_ids: Optional[torch.Tensor],
positions: torch.Tensor,
token_type_ids: Optional[torch.Tensor] = None,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> torch.Tensor:
return self.model(input_ids=input_ids,
position_ids=positions,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
intermediate_tensors=intermediate_tensors)

Expand Down Expand Up @@ -446,8 +442,8 @@ def _build_pooler(self, pooler_config: PoolerConfig) -> Pooler:
softmax=False)


class BertForSequenceClassification(nn.Module, SupportsV0Only,
SupportsCrossEncoding, SupportsQuant):
class BertForSequenceClassification(nn.Module, SupportsCrossEncoding,
SupportsQuant):
"""A model that uses Bert to provide embedding functionalities.

This class encapsulates the BertModel and provides an interface for
Expand Down
38 changes: 16 additions & 22 deletions vllm/model_executor/models/roberta.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@
get_cross_encoder_activation_function)

from .bert_with_rope import BertWithRope, JinaRobertaModel
from .interfaces import SupportsCrossEncoding, SupportsV0Only
from .interfaces import SupportsCrossEncoding


class RobertaEmbedding(nn.Module):
Expand Down Expand Up @@ -52,41 +52,36 @@ def __init__(self, config: RobertaConfig):
def forward(
self,
input_ids: torch.Tensor,
seq_lens: torch.Tensor,
position_ids: torch.Tensor,
token_type_ids: Optional[torch.Tensor] = None,
) -> torch.Tensor:

input_shape = input_ids.size()
inputs_embeds = self.word_embeddings(input_ids)

zero_pos = torch.where(position_ids == 0)[0]
end_pos = torch.cat((zero_pos[1:],
torch.tensor([position_ids.shape[0]],
device=zero_pos.device)))
seq_lens = end_pos - zero_pos

# Replace position ids because in RoBERTa models
# they have to start at padding_idx + 1 and ignore
# existing padding tokens
# References:
# - https://github.com/huggingface/transformers/blob/a3d69a8994d673899608a7c17fbf4f953f50474e/src/transformers/models/roberta/modeling_roberta.py#L133
# - https://github.com/huggingface/transformers/blob/a3d69a8994d673899608a7c17fbf4f953f50474e/src/transformers/models/roberta/modeling_roberta.py#L1669
token_list = torch.split(input_ids, seq_lens.tolist())

pos_list = []
token_list = []
offset = 0
for seq_len in seq_lens:
pos_list.append(position_ids[offset:offset + seq_len])
token_list.append(input_ids[offset:offset + seq_len])
offset += seq_len

new_pos_list = []
for positions, tokens in zip(pos_list, token_list):
# Verify assumption that incoming position are
# always a sequence from 0 to N.
expected_pos = torch.arange(positions.size()[0],
dtype=torch.long,
device=inputs_embeds.device)
assert torch.equal(positions, expected_pos)
new_pos_list.append(
for tokens in token_list:
pos_list.append(
create_position_ids_from_input_ids(tokens, self.padding_idx))
position_ids = torch.cat(new_pos_list)

corrected_positions = torch.cat(pos_list)

# Position embeddings.
position_embeddings = self.position_embeddings(position_ids)
position_embeddings = self.position_embeddings(corrected_positions)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape,
dtype=torch.long,
Expand Down Expand Up @@ -150,8 +145,7 @@ def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
assert len(loaded), "Unable to load RobertaEmbeddingModel"


class RobertaForSequenceClassification(nn.Module, SupportsCrossEncoding,
SupportsV0Only):
class RobertaForSequenceClassification(nn.Module, SupportsCrossEncoding):
"""A model that uses Roberta to provide embedding functionalities.

This class encapsulates the BertModel and provides an interface for
Expand Down
30 changes: 25 additions & 5 deletions vllm/v1/attention/backends/flash_attn.py
Original file line number Diff line number Diff line change
Expand Up @@ -386,11 +386,13 @@ def __init__(
f"Supported head sizes are: {support_head_sizes}. "
"Set VLLM_USE_V1=0 to use another attention backend.")

if attn_type != AttentionType.DECODER:
raise NotImplementedError("Encoder self-attention and "
"encoder/decoder cross-attention "
"are not implemented for "
if attn_type not in [
AttentionType.DECODER, AttentionType.ENCODER_ONLY
]:
raise NotImplementedError("Encoder/decoder cross-attention "
"is not implemented for "
"FlashAttentionImpl")
Comment on lines +389 to 394
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

medium

The NotImplementedError message is not very descriptive. It should indicate what types of attention are not implemented, and what attention types are supported.

        if attn_type not in [
                AttentionType.DECODER, AttentionType.ENCODER_ONLY
        ]:
            raise NotImplementedError("FlashAttentionImpl only supports DECODER and ENCODER_ONLY attention types.")

self.attn_type = attn_type
self.use_irope = use_irope
self.vllm_flash_attn_version = get_flash_attn_version()
if is_quantized_kv_cache(self.kv_cache_dtype) \
Expand Down Expand Up @@ -509,7 +511,7 @@ def forward(
seqused_k=seqused_k,
max_seqlen_k=max_seqlen_k,
softmax_scale=self.scale,
causal=True,
causal=_get_causal_option(self.attn_type),
alibi_slopes=self.alibi_slopes,
window_size=self.sliding_window,
block_table=block_table,
Expand Down Expand Up @@ -711,3 +713,21 @@ def cascade_attention(
# Merge prefix and suffix outputs, and store the result in output.
merge_attn_states(output, prefix_output, prefix_lse, suffix_output,
suffix_lse)


def _get_causal_option(attn_type: str) -> bool:
"""
Determine whether the given attention type is suitable for causal
attention mechanisms.

Args:
attn_type (AttentionType): The type of attention being evaluated

Returns:
bool: Returns `True` if the attention type is suitable for causal
attention (i.e., not encoder, encoder-only, or encoder-decoder),
otherwise returns `False`.
"""
return not (attn_type == AttentionType.ENCODER
or attn_type == AttentionType.ENCODER_ONLY
or attn_type == AttentionType.ENCODER_DECODER)
1 change: 1 addition & 0 deletions vllm/v1/core/kv_cache_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -915,6 +915,7 @@ def is_hybrid(kv_cache_spec: dict[str, KVCacheSpec]) -> bool:
dtype=spec.dtype,
use_mla=spec.use_mla,
sliding_window=spec.sliding_window,
attn_type=str(spec.attn_type),
)

if is_hybrid(kv_cache_spec):
Expand Down
2 changes: 2 additions & 0 deletions vllm/v1/core/sched/output.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@ class NewRequestData:

req_id: str
prompt_token_ids: list[int]
token_type_ids: Optional[list[int]]
mm_inputs: list[MultiModalKwargs]
mm_hashes: list[str]
mm_positions: list[PlaceholderRange]
Expand All @@ -42,6 +43,7 @@ def from_request(
return cls(
req_id=request.request_id,
prompt_token_ids=request.prompt_token_ids,
token_type_ids=request.token_type_ids,
mm_inputs=request.mm_inputs,
mm_hashes=request.mm_hashes,
mm_positions=request.mm_positions,
Expand Down
1 change: 1 addition & 0 deletions vllm/v1/engine/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,6 +49,7 @@ class EngineCoreRequest(

request_id: str
prompt_token_ids: list[int]
token_type_ids: Optional[list[int]]
mm_inputs: Optional[Sequence[Optional[MultiModalKwargs]]]
mm_hashes: Optional[list[str]]
mm_placeholders: Optional[list[PlaceholderRange]]
Expand Down
19 changes: 18 additions & 1 deletion vllm/v1/engine/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@
EngineCoreRequestType, UtilityOutput)
from vllm.v1.engine.mm_input_cache import MirroredProcessingCache
from vllm.v1.executor.abstract import Executor
from vllm.v1.kv_cache_interface import KVCacheConfig
from vllm.v1.kv_cache_interface import AttentionSpec, KVCacheConfig
from vllm.v1.metrics.stats import SchedulerStats
from vllm.v1.outputs import ModelRunnerOutput
from vllm.v1.request import Request, RequestStatus
Expand Down Expand Up @@ -150,6 +150,23 @@ def _initialize_kv_caches(
zip(kv_cache_specs, available_gpu_memory)
]

for kv_cache_spec_one_worker in kv_cache_specs:
for _, spec in kv_cache_spec_one_worker.items():
if isinstance(spec, AttentionSpec) and \
spec.attn_type != "decoder":

logger.info("Found non-decoder layer. Disabling "
"prefix cache and chunked prefill")
self.vllm_config.cache_config.\
enable_prefix_caching = False
self.vllm_config.scheduler_config.\
enable_chunked_prefill = False
self.vllm_config.scheduler_config.\
chunked_prefill_enabled = False
self.vllm_config.scheduler_config.\
long_prefill_token_threshold = 0
break
Comment on lines +155 to +168
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

medium

Consider adding a check to ensure that prefix caching and chunked prefill are not enabled when a non-decoder layer is found. This would provide a more explicit error message to the user, rather than silently disabling the features.

Suggested change
if isinstance(spec, AttentionSpec) and \
spec.attn_type != "decoder":
logger.info("Found non-decoder layer. Disabling "
"prefix cache and chunked prefill")
self.vllm_config.cache_config.\
enable_prefix_caching = False
self.vllm_config.scheduler_config.\
enable_chunked_prefill = False
self.vllm_config.scheduler_config.\
chunked_prefill_enabled = False
self.vllm_config.scheduler_config.\
long_prefill_token_threshold = 0
break
for kv_cache_spec_one_worker in kv_cache_specs:
for _, spec in kv_cache_spec_one_worker.items():
if isinstance(spec, AttentionSpec) and \
spec.attn_type != "decoder":
if self.vllm_config.cache_config.enable_prefix_caching or \
self.vllm_config.scheduler_config.enable_chunked_prefill:
raise ValueError("Prefix caching and chunked prefill are not supported for non-decoder models.")


# Since we use a shared centralized controller, we need the
# `kv_cache_config` to be consistent across all workers to make sure
# all the memory operators can be applied to all workers.
Expand Down
1 change: 1 addition & 0 deletions vllm/v1/engine/processor.py
Original file line number Diff line number Diff line change
Expand Up @@ -329,6 +329,7 @@ def process_inputs(
return decoder_inputs.get("prompt"), EngineCoreRequest(
request_id=request_id,
prompt_token_ids=decoder_inputs["prompt_token_ids"],
token_type_ids=decoder_inputs.get("token_type_ids"),
mm_inputs=sorted_mm_inputs,
mm_hashes=sorted_mm_hashes,
mm_placeholders=sorted_mm_positions,
Expand Down
1 change: 1 addition & 0 deletions vllm/v1/kv_cache_interface.py
Original file line number Diff line number Diff line change
Expand Up @@ -75,6 +75,7 @@ class AttentionSpec(KVCacheSpec):
head_size: int
dtype: torch.dtype
use_mla: bool
attn_type: str

@property
def page_size_bytes(self) -> int:
Expand Down
3 changes: 3 additions & 0 deletions vllm/v1/request.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@ def __init__(
self,
request_id: str,
prompt_token_ids: list[int],
token_type_ids: Optional[list[int]],
multi_modal_inputs: Optional[list[MultiModalKwargs]],
multi_modal_hashes: Optional[list[str]],
multi_modal_placeholders: Optional[list[PlaceholderRange]],
Expand Down Expand Up @@ -74,6 +75,7 @@ def __init__(
"sampling_params and pooling_params can't both be unset")

self.prompt_token_ids = prompt_token_ids
self.token_type_ids = token_type_ids
self.num_prompt_tokens = len(self.prompt_token_ids)
self._output_token_ids: list[int] = []
self._all_token_ids: list[int] = self.prompt_token_ids.copy()
Expand Down Expand Up @@ -118,6 +120,7 @@ def from_engine_core_request(cls, request: EngineCoreRequest) -> "Request":
request_id=request.request_id,
client_index=request.client_index,
prompt_token_ids=request.prompt_token_ids,
token_type_ids=request.token_type_ids,
multi_modal_inputs=request.mm_inputs,
multi_modal_hashes=request.mm_hashes,
multi_modal_placeholders=request.mm_placeholders,
Expand Down
Loading