Skip to content

Create Skimu #2100

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 1 commit into from
Closed

Create Skimu #2100

wants to merge 1 commit into from

Conversation

coders33123
Copy link

@coders33123 coders33123 commented Apr 5, 2025

-pip install scikit-learnfrom sklearn.ensemble import RandomForestClassifier
+from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_learn] # Archive and Compressed Files
7z ACE ALZ ARC ARJ BZ2 CAB CPT SEA EGG EGT ECAB EZIP ESS FLIPCHART FUN GZ JAR LAWRENCE LBR LZH LZ LZO LZMA LZX MBW BIN OAR PAK PAR PAR2 PAF PEA PYK RAR RaX SITX TAR WAX XZ Z ZOO ZIP

Application Packages

ABB APK APPX APP DEB HPKG IPG RPM SIS SISX XAP

Physical Recordable Media Archiving

ADF ADZ B5T B6T BWT BIN CDI CUE CIF C2D DAA D64 DMG DMS DSK ESD FFPPKG GHO GHS IMG ISO MDS MDX NRG SDI SWM TIB WIM

Other Extensions

Msi Vdhx

Computer-Aided Design Files

3DXML 3MF ACP AMF AEC AEDT AR ART ASC ASM BIN BIM BREP C3D C3P CCC CCM CCS CAD CATDrawing CATPart CATProduct CATProcess CGR CKD CKT CO DAB DRW DFT DGN DGK DMT DXF DWB DWF DWG EASM EDRW EMB EPRT EscPcb EscSch ESW EXCELLON EXP F3D FCStd FM FMZ G GBR GLM GRB GRI GRO IAM ICD IDW IFC IGES DGN CEL IO IPN IPT JT MCD MDG model OCD PAR PART PIPE PLN PRT PSM PSMODEL PWI PYT RLF RVM RVT RFA RFT RXF S12 SCAD SCDOC SKB SKP SLDASM SLDDRW SLDPRT dotXSI STATE STEP STL STD TCT TCW UNV VC6 VLM VS WRL X_B X_T XE ZOFZPROJ

Electronic Design Automation (EDA) Files

BRD BSDL CDL CPF DEF Detailed Standard Parasitic Format EDIF FSDB GDSII HEX LEF Liberty EDA MS12 OASIS OpenAccess PSF PSFXL SDC SDF SPEF SPI CIR SREC S19 SST2 STIL SV S*P TLF UPF V VCD VHD VHDL WGL

Test Technology Files

Standard Test Data Format

Database Files

4DB 4DC 4DD 4DIndy 4DIndx 4DR 4DZ ACCDB ACCDE ADT APR BOX CHML DAF DAT DB DBF DTA EGT ESS EAP FDB FP FP3 FP5 FP7 FRM GDB GTABLE KEXI KEXIC KEXIS LDB LIRS MDA MDB ADP MDE MDF MYD MYI NCF NSF NTF NV2 ODB ORA PCONTACT PDB PDI PDX PRC SQL REC REL RIN SDB SDF SQLITE UDL waData walndx waModel waJournal WDB WMDB

Big Data (Distributed) Files

Avro Parquet ORC

Desktop Publishing Files

AI AVE ZAVE CDR CHP pub STY CAP CIF VGR FRM CPT DPE DTP FM GDRAW ILDOC INDD MCF PDF PMD PPP PSD PUB QXD SLA SCD XCF

Document Files

0 1ST 600 602 ABW ACL AFP AMI ANS ASC AWW BBeB CCF CSV CWK DBK DITA DOC DOCM DOCX DOT DOTX DWD EGT EPUB EVTX EZW FDX FTM FTX GDOC GUIDE HTML HTM HWP HWPML KPUB LOG LWP MBP MD ME MCW Mobi NB NBP NEIS NT NQ ODM ODOC ODT OSHEET OTT OMM PAGES PAP PER PDR PDAX PDF PROTONDOC QUOX Radix-64 RTF RPT SDW SE STW Sxw TeX TMDX INFO Troff TXT UOF UOML VIA WPD WPS WPT WRD WRF WRI XHTML XHT XML XPS MYO MYOB TAX YNAB Tax2010 IFX OFX QFX QIF

Font Files

ABF AFM BDF BMF BRFNT FNT FON MGF OTF PCF PFA PFB PFM FOND SFD SNF TDF TFM TTF TTC UFO WOFF

Geographic Information System Files

IFDS ASC APR DEM E00 GeoJSON TopoJSON GeoTIFF GML GPX ITN MXD NTF OV2 SHP TAB KML 3DT ATY CAG FES

Graphical Information Organizers

MGMF MM MMP MUP TPC

Graphics Files

ACT ASE GPL PAL ICC ICM

Raster Graphics Files

ART BLP BMP BTI C4 CALS CD5 CIT CPT CLIP CPL DDS DIB DjVu EGT EXIF GIF GIFV GRF ICNS HEIC ICO IFF ILBM LBM JNG JPEG JFIF JPG JP2 JPS JXL KRA LBM MAX MIFF MNG MSP NEF NITF OTB PBM PC1 PC2 PC3 PCF PCX PDD PDN PGF PGM PI1 PI2 PI3 PICT PCT PNG PNJ PNM PNS PPM procreate PSB PSD PSP PX PXM PXR PXZ QFX RLE SCT SGI RGB INT BW TGA TARGA ICB VDA VST PIX TIFF TIF TIFF/EP TIF VTF WEBP XBM XCF XPM ZIF CR2 DNG RAW

Vector Graphics Files

3DV AMF AWG AI CGM CDR CMX DP DRAWIO DXF E2D EGT EPS FS GBR ODG MOVIE.BYU RenderMan SVG 3DMLW STL WRL X3D SXD TGAX V2D VDOC VSD VSDX VND WMF EMF ART XAR

3D Graphics Files

3DMF 3DM 3MF 3DS ABC AC AMF AN8 AOI ASM B3D BBMODEL BLEND BLOCK BMD3 BDL4 BRRES BFRES C4D Cal3D CCP4 CFL COB CORE3D CTM DAE DFF DN DPM DTS EGG FACT FBX G GLB GLM glTF HEC IO IOB JAS JMESH LDR LWO LWS LXF LXO M3D MA MAX MB MPD MD2 MD3 MD5 MDX MESH MIOBJECT MIPARTICLE MIMODEL MM3D MPO MRC NIF NWC NWD NWF OBJ OFF OGEX PLY PRC PRT POV R3D RWX SIA SIB SKP SLDASM SLDPRT SMD U3D USD USDA USDC V3D VOB VRML W3D X X3D

Data Storage Files

CDF

Scientific Data Formats

NetCDF HDR HDF h4 h5 SDXF CDF CGNS FMF GRIB BUFR PP NASA-Ames CML MOL SD SDF DX JDX SMI G6 S6

Biometric Files

EBF CBFX EBFX

Programming Languages and Scripts

A ADB ADS AHK APPLESCRIPT AS AU3 AWK B BAT BAS BTM CLASS CLS CLJS CMD Coffee C CIA CPP CS DART FS EGG EGT ERB GO GD HTA HX HXML IBI ICI IJS INO IPYNB ITCL JS JSFL JSX KT LUA M MRC NCF NUC NUD NUT NQP O PDE PHP PL PM PS1 PS1XML PSC1 PSD1 PSM1 PY PYC PYO R RAKU RAKUMOD RAKUDOC RAKUTEST RB RDP RED REXX RXS REXG REXP RS SB SB2 SB3 SCPT SCPTD SDL SH SPRITE3 SPWN SYJS SYPY TCL TNS TS TSCN UP V VBS VBP VBA VBE VB VC WSF XBL XPL XSLT Y

Audio Files

AAC AAX AC3 ACT ADPCM AF AFC AIF AIFF ALAC AMR APE AU AWB DSS DTS DTS-HD DVDA DWD DTS:X E-AC-3 FLAC GSM HCOM HVOC IVS M4A M4B M4P MID MIDI MLP MOD MP2 MP3 MP4 MPC MQA MSV OGA OGG OPUS PSM PTF S3M SF SHN SPX TAK TTA VORBIS W64 WAV WMA WV XMF

Other Audio and Music Related Files

ASF CUST GYM JAM MNG NIFF PTB PVD RMJ SF2 SF3 SF4 SID SPC TXM VGM YM YM2149 AIMPPL ASX RAM XPL XSPF ZPL M3U PLS(https://github.com/user-attachments/files/19614368/List_of_file_formats.scronym.pdf)

from sklearn.model_selection import train_test_split
from sklearn.metrics import f1_score
from sklearn.model_selection import cross_val_score

class StatefulWeightedDomainGraph:
def init(self, model, retrain_f1_threshold=0.8):
"""
Initializes the graph with the model and the F1 threshold for retraining.

    :param model: A machine learning model (e.g., RandomForest, SVM, etc.)
    :param retrain_f1_threshold: F1 score threshold below which retraining is triggered
    """
    self.model = model
    self.retrain_f1_threshold = retrain_f1_threshold

def train_model(self, X_train, y_train, X_test, y_test):
    """
    Trains the model, performs cross-validation, evaluates it, 
    and triggers retraining if necessary.

    :param X_train: Training feature set
    :param y_train: Training labels
    :param X_test: Test feature set
    :param y_test: Test labels
    """
    # Train the model on the training data
    self.model.fit(X_train, y_train)
    
    # Perform cross-validation to evaluate model performance
    cv_scores = cross_val_score(self.model, X_train, y_train, cv=5, scoring='f1_weighted')
    print(f"Cross-Validation F1 Scores: {cv_scores}")
    print(f"Mean Cross-Validation F1 Score: {cv_scores.mean():.4f}")
    
    # Evaluate the model on the test set
    y_pred = self.model.predict(X_test)
    f1 = f1_score(y_test, y_pred, average='weighted')
    print(f"Test F1 Score: {f1:.4f}")

    # Trigger retraining if F1 score is below the threshold
    if f1 < self.retrain_f1_threshold:
        print("Retraining triggered due to low F1 score.")
        self.model.fit(X_train, y_train)

def check_retrain(self, X_test, y_test):
    """
    Checks whether retraining is needed based on the F1 score.

    :param X_test: Test feature set
    :param y_test: Test labels
    :return: True if retraining is needed, False otherwise
    """
    if self.model:
        y_pred = self.model.predict(X_test)
        f1 = f1_score(y_test, y_pred, average='weighted')
        return f1 < self.retrain_f1_threshold
    return False

Load a sample dataset (e.g., Iris dataset)

data = load_iris()
X = data.data
y = data.target

Split into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

Initialize the model

model = RandomForestClassifier()

Create an instance of StatefulWeightedDomainGraph

graph = StatefulWeightedDomainGraph(model, retrain_f1_threshold=0.75)

Train and evaluate the model

graph.train_model(X_train, y_train, X_test, y_test)
List_of_file_formats scronym .pdf

Copy link
Contributor

coderabbitai bot commented Apr 5, 2025

Walkthrough

The pull request introduces a new class, StatefulWeightedDomainGraph, that encapsulates a machine learning model and its associated training and evaluation procedures. The class constructor accepts a machine learning model and an F1 score threshold to decide when retraining is necessary. It provides a train_model method to train the model using provided training data, perform cross-validation, and evaluate performance on a test set. If the F1 score on the test set falls below the specified threshold, the model is retrained. Additionally, a check_retrain method is implemented for determining if retraining is needed based on test set evaluation. The changes also include functionality to load the Iris dataset, split it into training and testing sets, and create an instance of the new class to train and evaluate the model.


Thanks for using CodeRabbit! It's free for OSS, and your support helps us grow. If you like it, consider giving us a shout-out.

❤️ Share
🪧 Tips

Chat

There are 3 ways to chat with CodeRabbit:

  • Review comments: Directly reply to a review comment made by CodeRabbit. Example:
    • I pushed a fix in commit <commit_id>, please review it.
    • Generate unit testing code for this file.
    • Open a follow-up GitHub issue for this discussion.
  • Files and specific lines of code (under the "Files changed" tab): Tag @coderabbitai in a new review comment at the desired location with your query. Examples:
    • @coderabbitai generate unit testing code for this file.
    • @coderabbitai modularize this function.
  • PR comments: Tag @coderabbitai in a new PR comment to ask questions about the PR branch. For the best results, please provide a very specific query, as very limited context is provided in this mode. Examples:
    • @coderabbitai gather interesting stats about this repository and render them as a table. Additionally, render a pie chart showing the language distribution in the codebase.
    • @coderabbitai read src/utils.ts and generate unit testing code.
    • @coderabbitai read the files in the src/scheduler package and generate a class diagram using mermaid and a README in the markdown format.
    • @coderabbitai help me debug CodeRabbit configuration file.

Note: Be mindful of the bot's finite context window. It's strongly recommended to break down tasks such as reading entire modules into smaller chunks. For a focused discussion, use review comments to chat about specific files and their changes, instead of using the PR comments.

CodeRabbit Commands (Invoked using PR comments)

  • @coderabbitai pause to pause the reviews on a PR.
  • @coderabbitai resume to resume the paused reviews.
  • @coderabbitai review to trigger an incremental review. This is useful when automatic reviews are disabled for the repository.
  • @coderabbitai full review to do a full review from scratch and review all the files again.
  • @coderabbitai summary to regenerate the summary of the PR.
  • @coderabbitai generate docstrings to generate docstrings for this PR.
  • @coderabbitai resolve resolve all the CodeRabbit review comments.
  • @coderabbitai plan to trigger planning for file edits and PR creation.
  • @coderabbitai configuration to show the current CodeRabbit configuration for the repository.
  • @coderabbitai help to get help.

Other keywords and placeholders

  • Add @coderabbitai ignore anywhere in the PR description to prevent this PR from being reviewed.
  • Add @coderabbitai summary to generate the high-level summary at a specific location in the PR description.
  • Add @coderabbitai anywhere in the PR title to generate the title automatically.

CodeRabbit Configuration File (.coderabbit.yaml)

  • You can programmatically configure CodeRabbit by adding a .coderabbit.yaml file to the root of your repository.
  • Please see the configuration documentation for more information.
  • If your editor has YAML language server enabled, you can add the path at the top of this file to enable auto-completion and validation: # yaml-language-server: $schema=https://coderabbit.ai/integrations/schema.v2.json

Documentation and Community

  • Visit our Documentation for detailed information on how to use CodeRabbit.
  • Join our Discord Community to get help, request features, and share feedback.
  • Follow us on X/Twitter for updates and announcements.

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 2

🔭 Outside diff range comments (1)
Skimu (1)

60-76: 🛠️ Refactor suggestion

Encapsulate example code in a main block.

The example code at the bottom of the file will run when the module is imported, which might not be intended.

+if __name__ == "__main__":
+    # Load a sample dataset (e.g., Iris dataset)
+    data = load_iris()
+    X = data.data
+    y = data.target
+
+    # Split into training and testing sets
+    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
+
+    # Initialize the model
+    model = RandomForestClassifier()
+
+    # Create an instance of StatefulWeightedDomainGraph
+    graph = StatefulWeightedDomainGraph(model, retrain_f1_threshold=0.75)
+
+    # Train and evaluate the model
+    graph.train_model(X_train, y_train, X_test, y_test)
-# Load a sample dataset (e.g., Iris dataset)
-data = load_iris()
-X = data.data
-y = data.target
-
-# Split into training and testing sets
-X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
-
-# Initialize the model
-model = RandomForestClassifier()
-
-# Create an instance of StatefulWeightedDomainGraph
-graph = StatefulWeightedDomainGraph(model, retrain_f1_threshold=0.75)
-
-# Train and evaluate the model
-graph.train_model(X_train, y_train, X_test, y_test)
🧹 Nitpick comments (3)
Skimu (3)

32-35: Replace print statements with logging.

Using print statements for output is not flexible for production environments. Consider using the logging module instead.

-        print(f"Cross-Validation F1 Scores: {cv_scores}")
-        print(f"Mean Cross-Validation F1 Score: {cv_scores.mean():.4f}")
+        import logging
+        logging.info(f"Cross-Validation F1 Scores: {cv_scores}")
+        logging.info(f"Mean Cross-Validation F1 Score: {cv_scores.mean():.4f}")

46-58: Improve error handling in check_retrain method.

The method should handle potential exceptions and could be more robust.

 def check_retrain(self, X_test, y_test):
     """
     Checks whether retraining is needed based on the F1 score.

     :param X_test: Test feature set
     :param y_test: Test labels
     :return: True if retraining is needed, False otherwise
     """
     if self.model:
-        y_pred = self.model.predict(X_test)
-        f1 = f1_score(y_test, y_pred, average='weighted')
-        return f1 < self.retrain_f1_threshold
+        try:
+            y_pred = self.model.predict(X_test)
+            f1 = f1_score(y_test, y_pred, average='weighted')
+            return f1 < self.retrain_f1_threshold
+        except Exception as e:
+            import logging
+            logging.error(f"Error during retrain check: {e}")
+            return True  # Conservative approach: retrain if evaluation fails
     return False

7-7: Class name may not align with its functionality.

The name StatefulWeightedDomainGraph suggests a graph-based implementation, but the class appears to be a wrapper for ML model training and evaluation with no graph-related functionality.

Consider renaming to something more descriptive of its actual purpose, such as ModelTrainingManager or AutoRetrainingModel.

📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between e7ecd9e and 1090b77.

📒 Files selected for processing (1)
  • Skimu (1 hunks)
🔇 Additional comments (1)
Skimu (1)

7-17: Class definition looks good.

The class definition is clear with appropriate documentation and a sensible default value for the F1 threshold parameter.

@sawka sawka closed this Apr 25, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants