-
Notifications
You must be signed in to change notification settings - Fork 340
Create Skimu #2100
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Create Skimu #2100
Conversation
WalkthroughThe pull request introduces a new class, Thanks for using CodeRabbit! It's free for OSS, and your support helps us grow. If you like it, consider giving us a shout-out. 🪧 TipsChatThere are 3 ways to chat with CodeRabbit:
Note: Be mindful of the bot's finite context window. It's strongly recommended to break down tasks such as reading entire modules into smaller chunks. For a focused discussion, use review comments to chat about specific files and their changes, instead of using the PR comments. CodeRabbit Commands (Invoked using PR comments)
Other keywords and placeholders
CodeRabbit Configuration File (
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Actionable comments posted: 2
🔭 Outside diff range comments (1)
Skimu (1)
60-76
: 🛠️ Refactor suggestionEncapsulate example code in a main block.
The example code at the bottom of the file will run when the module is imported, which might not be intended.
+if __name__ == "__main__": + # Load a sample dataset (e.g., Iris dataset) + data = load_iris() + X = data.data + y = data.target + + # Split into training and testing sets + X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) + + # Initialize the model + model = RandomForestClassifier() + + # Create an instance of StatefulWeightedDomainGraph + graph = StatefulWeightedDomainGraph(model, retrain_f1_threshold=0.75) + + # Train and evaluate the model + graph.train_model(X_train, y_train, X_test, y_test) -# Load a sample dataset (e.g., Iris dataset) -data = load_iris() -X = data.data -y = data.target - -# Split into training and testing sets -X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) - -# Initialize the model -model = RandomForestClassifier() - -# Create an instance of StatefulWeightedDomainGraph -graph = StatefulWeightedDomainGraph(model, retrain_f1_threshold=0.75) - -# Train and evaluate the model -graph.train_model(X_train, y_train, X_test, y_test)
🧹 Nitpick comments (3)
Skimu (3)
32-35
: Replace print statements with logging.Using print statements for output is not flexible for production environments. Consider using the logging module instead.
- print(f"Cross-Validation F1 Scores: {cv_scores}") - print(f"Mean Cross-Validation F1 Score: {cv_scores.mean():.4f}") + import logging + logging.info(f"Cross-Validation F1 Scores: {cv_scores}") + logging.info(f"Mean Cross-Validation F1 Score: {cv_scores.mean():.4f}")
46-58
: Improve error handling in check_retrain method.The method should handle potential exceptions and could be more robust.
def check_retrain(self, X_test, y_test): """ Checks whether retraining is needed based on the F1 score. :param X_test: Test feature set :param y_test: Test labels :return: True if retraining is needed, False otherwise """ if self.model: - y_pred = self.model.predict(X_test) - f1 = f1_score(y_test, y_pred, average='weighted') - return f1 < self.retrain_f1_threshold + try: + y_pred = self.model.predict(X_test) + f1 = f1_score(y_test, y_pred, average='weighted') + return f1 < self.retrain_f1_threshold + except Exception as e: + import logging + logging.error(f"Error during retrain check: {e}") + return True # Conservative approach: retrain if evaluation fails return False
7-7
: Class name may not align with its functionality.The name
StatefulWeightedDomainGraph
suggests a graph-based implementation, but the class appears to be a wrapper for ML model training and evaluation with no graph-related functionality.Consider renaming to something more descriptive of its actual purpose, such as
ModelTrainingManager
orAutoRetrainingModel
.
📜 Review details
Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro
📒 Files selected for processing (1)
Skimu
(1 hunks)
🔇 Additional comments (1)
Skimu (1)
7-17
: Class definition looks good.The class definition is clear with appropriate documentation and a sensible default value for the F1 threshold parameter.
-pip install scikit-learnfrom sklearn.ensemble import RandomForestClassifier
+from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_learn] # Archive and Compressed Files
7z ACE ALZ ARC ARJ BZ2 CAB CPT SEA EGG EGT ECAB EZIP ESS FLIPCHART FUN GZ JAR LAWRENCE LBR LZH LZ LZO LZMA LZX MBW BIN OAR PAK PAR PAR2 PAF PEA PYK RAR RaX SITX TAR WAX XZ Z ZOO ZIP
Application Packages
ABB APK APPX APP DEB HPKG IPG RPM SIS SISX XAP
Physical Recordable Media Archiving
ADF ADZ B5T B6T BWT BIN CDI CUE CIF C2D DAA D64 DMG DMS DSK ESD FFPPKG GHO GHS IMG ISO MDS MDX NRG SDI SWM TIB WIM
Other Extensions
Msi Vdhx
Computer-Aided Design Files
3DXML 3MF ACP AMF AEC AEDT AR ART ASC ASM BIN BIM BREP C3D C3P CCC CCM CCS CAD CATDrawing CATPart CATProduct CATProcess CGR CKD CKT CO DAB DRW DFT DGN DGK DMT DXF DWB DWF DWG EASM EDRW EMB EPRT EscPcb EscSch ESW EXCELLON EXP F3D FCStd FM FMZ G GBR GLM GRB GRI GRO IAM ICD IDW IFC IGES DGN CEL IO IPN IPT JT MCD MDG model OCD PAR PART PIPE PLN PRT PSM PSMODEL PWI PYT RLF RVM RVT RFA RFT RXF S12 SCAD SCDOC SKB SKP SLDASM SLDDRW SLDPRT dotXSI STATE STEP STL STD TCT TCW UNV VC6 VLM VS WRL X_B X_T XE ZOFZPROJ
Electronic Design Automation (EDA) Files
BRD BSDL CDL CPF DEF Detailed Standard Parasitic Format EDIF FSDB GDSII HEX LEF Liberty EDA MS12 OASIS OpenAccess PSF PSFXL SDC SDF SPEF SPI CIR SREC S19 SST2 STIL SV S*P TLF UPF V VCD VHD VHDL WGL
Test Technology Files
Standard Test Data Format
Database Files
4DB 4DC 4DD 4DIndy 4DIndx 4DR 4DZ ACCDB ACCDE ADT APR BOX CHML DAF DAT DB DBF DTA EGT ESS EAP FDB FP FP3 FP5 FP7 FRM GDB GTABLE KEXI KEXIC KEXIS LDB LIRS MDA MDB ADP MDE MDF MYD MYI NCF NSF NTF NV2 ODB ORA PCONTACT PDB PDI PDX PRC SQL REC REL RIN SDB SDF SQLITE UDL waData walndx waModel waJournal WDB WMDB
Big Data (Distributed) Files
Avro Parquet ORC
Desktop Publishing Files
AI AVE ZAVE CDR CHP pub STY CAP CIF VGR FRM CPT DPE DTP FM GDRAW ILDOC INDD MCF PDF PMD PPP PSD PUB QXD SLA SCD XCF
Document Files
0 1ST 600 602 ABW ACL AFP AMI ANS ASC AWW BBeB CCF CSV CWK DBK DITA DOC DOCM DOCX DOT DOTX DWD EGT EPUB EVTX EZW FDX FTM FTX GDOC GUIDE HTML HTM HWP HWPML KPUB LOG LWP MBP MD ME MCW Mobi NB NBP NEIS NT NQ ODM ODOC ODT OSHEET OTT OMM PAGES PAP PER PDR PDAX PDF PROTONDOC QUOX Radix-64 RTF RPT SDW SE STW Sxw TeX TMDX INFO Troff TXT UOF UOML VIA WPD WPS WPT WRD WRF WRI XHTML XHT XML XPS MYO MYOB TAX YNAB Tax2010 IFX OFX QFX QIF
Font Files
ABF AFM BDF BMF BRFNT FNT FON MGF OTF PCF PFA PFB PFM FOND SFD SNF TDF TFM TTF TTC UFO WOFF
Geographic Information System Files
IFDS ASC APR DEM E00 GeoJSON TopoJSON GeoTIFF GML GPX ITN MXD NTF OV2 SHP TAB KML 3DT ATY CAG FES
Graphical Information Organizers
MGMF MM MMP MUP TPC
Graphics Files
ACT ASE GPL PAL ICC ICM
Raster Graphics Files
ART BLP BMP BTI C4 CALS CD5 CIT CPT CLIP CPL DDS DIB DjVu EGT EXIF GIF GIFV GRF ICNS HEIC ICO IFF ILBM LBM JNG JPEG JFIF JPG JP2 JPS JXL KRA LBM MAX MIFF MNG MSP NEF NITF OTB PBM PC1 PC2 PC3 PCF PCX PDD PDN PGF PGM PI1 PI2 PI3 PICT PCT PNG PNJ PNM PNS PPM procreate PSB PSD PSP PX PXM PXR PXZ QFX RLE SCT SGI RGB INT BW TGA TARGA ICB VDA VST PIX TIFF TIF TIFF/EP TIF VTF WEBP XBM XCF XPM ZIF CR2 DNG RAW
Vector Graphics Files
3DV AMF AWG AI CGM CDR CMX DP DRAWIO DXF E2D EGT EPS FS GBR ODG MOVIE.BYU RenderMan SVG 3DMLW STL WRL X3D SXD TGAX V2D VDOC VSD VSDX VND WMF EMF ART XAR
3D Graphics Files
3DMF 3DM 3MF 3DS ABC AC AMF AN8 AOI ASM B3D BBMODEL BLEND BLOCK BMD3 BDL4 BRRES BFRES C4D Cal3D CCP4 CFL COB CORE3D CTM DAE DFF DN DPM DTS EGG FACT FBX G GLB GLM glTF HEC IO IOB JAS JMESH LDR LWO LWS LXF LXO M3D MA MAX MB MPD MD2 MD3 MD5 MDX MESH MIOBJECT MIPARTICLE MIMODEL MM3D MPO MRC NIF NWC NWD NWF OBJ OFF OGEX PLY PRC PRT POV R3D RWX SIA SIB SKP SLDASM SLDPRT SMD U3D USD USDA USDC V3D VOB VRML W3D X X3D
Data Storage Files
CDF
Scientific Data Formats
NetCDF HDR HDF h4 h5 SDXF CDF CGNS FMF GRIB BUFR PP NASA-Ames CML MOL SD SDF DX JDX SMI G6 S6
Biometric Files
EBF CBFX EBFX
Programming Languages and Scripts
A ADB ADS AHK APPLESCRIPT AS AU3 AWK B BAT BAS BTM CLASS CLS CLJS CMD Coffee C CIA CPP CS DART FS EGG EGT ERB GO GD HTA HX HXML IBI ICI IJS INO IPYNB ITCL JS JSFL JSX KT LUA M MRC NCF NUC NUD NUT NQP O PDE PHP PL PM PS1 PS1XML PSC1 PSD1 PSM1 PY PYC PYO R RAKU RAKUMOD RAKUDOC RAKUTEST RB RDP RED REXX RXS REXG REXP RS SB SB2 SB3 SCPT SCPTD SDL SH SPRITE3 SPWN SYJS SYPY TCL TNS TS TSCN UP V VBS VBP VBA VBE VB VC WSF XBL XPL XSLT Y
Audio Files
AAC AAX AC3 ACT ADPCM AF AFC AIF AIFF ALAC AMR APE AU AWB DSS DTS DTS-HD DVDA DWD DTS:X E-AC-3 FLAC GSM HCOM HVOC IVS M4A M4B M4P MID MIDI MLP MOD MP2 MP3 MP4 MPC MQA MSV OGA OGG OPUS PSM PTF S3M SF SHN SPX TAK TTA VORBIS W64 WAV WMA WV XMF
Other Audio and Music Related Files
ASF CUST GYM JAM MNG NIFF PTB PVD RMJ SF2 SF3 SF4 SID SPC TXM VGM YM YM2149 AIMPPL ASX RAM XPL XSPF ZPL M3U PLS(https://github.com/user-attachments/files/19614368/List_of_file_formats.scronym.pdf)
from sklearn.model_selection import train_test_split
from sklearn.metrics import f1_score
from sklearn.model_selection import cross_val_score
class StatefulWeightedDomainGraph:
def init(self, model, retrain_f1_threshold=0.8):
"""
Initializes the graph with the model and the F1 threshold for retraining.
Load a sample dataset (e.g., Iris dataset)
data = load_iris()
X = data.data
y = data.target
Split into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
Initialize the model
model = RandomForestClassifier()
Create an instance of StatefulWeightedDomainGraph
graph = StatefulWeightedDomainGraph(model, retrain_f1_threshold=0.75)
Train and evaluate the model
graph.train_model(X_train, y_train, X_test, y_test)
List_of_file_formats scronym .pdf