Skip to content

Tracking Issue: Primitive Shapes #10572

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
30 of 41 tasks
Jondolf opened this issue Nov 15, 2023 · 8 comments
Open
30 of 41 tasks

Tracking Issue: Primitive Shapes #10572

Jondolf opened this issue Nov 15, 2023 · 8 comments
Labels
A-Math Fundamental domain-agnostic mathematical operations A-Rendering Drawing game state to the screen C-Feature A new feature, making something new possible C-Tracking-Issue An issue that collects information about a broad development initiative

Comments

@Jondolf
Copy link
Contributor

Jondolf commented Nov 15, 2023

This issue tracks progress on primitive shapes, which were first added in #10466 based on the primitive-shapes RFC.

Meshing #10569

Primitives should support Mesh construction.

Gizmos #10571

Gizmos should support drawing primitives.

Bounding volumes #10570

Bevy should have first-party bounding volumes and support computing them for primitives.

List of primitives

Remove bounding volumes from bevy_render

See #13945

Misc

Long-term possibilities

  • Bounding Volume Hierarchies (BVH)
    • Broad phase collision detection
    • Spatial query pipeline
    • Rendering
  • Frustum culling
  • Collider shapes and collision detection for primitives
  • Raycasting and other spatial queries for primitives
  • Signed Distance Functions (SDF) for primitives
@Jondolf Jondolf added C-Feature A new feature, making something new possible S-Needs-Triage This issue needs to be labelled labels Nov 15, 2023
@nicopap nicopap added C-Tracking-Issue An issue that collects information about a broad development initiative A-Rendering Drawing game state to the screen and removed S-Needs-Triage This issue needs to be labelled labels Nov 16, 2023
github-merge-queue bot pushed a commit that referenced this issue Nov 17, 2023
# Add and implement constructors for Primitives

- Adds more Primitive types and adds a constructor for almost all of
them
- Works towards finishing #10572 

## Solution

- Created new primitives
    - Torus
    - Conical Frustum
    - Cone
    - Ellipse
- Implemented constructors (`Primitive::new`) for almost every single
other primitive.

---------

Co-authored-by: Joona Aalto <[email protected]>
Co-authored-by: Alice Cecile <[email protected]>
@Jondolf Jondolf added the A-Math Fundamental domain-agnostic mathematical operations label Nov 19, 2023
github-merge-queue bot pushed a commit that referenced this issue Dec 6, 2023
…10856)

# Objective

A better alternative version of #10843.

Currently, Bevy has a single `Ray` struct for 3D. To allow better
interoperability with Bevy's primitive shapes (#10572) and some third
party crates (that handle e.g. spatial queries), it would be very useful
to have separate versions for 2D and 3D respectively.

## Solution

Separate `Ray` into `Ray2d` and `Ray3d`. These new structs also take
advantage of the new primitives by using `Direction2d`/`Direction3d` for
the direction:

```rust
pub struct Ray2d {
    pub origin: Vec2,
    pub direction: Direction2d,
}

pub struct Ray3d {
    pub origin: Vec3,
    pub direction: Direction3d,
}
```

and by using `Plane2d`/`Plane3d` in `intersect_plane`:

```rust
impl Ray2d {
    // ...
    pub fn intersect_plane(&self, plane_origin: Vec2, plane: Plane2d) -> Option<f32> {
        // ...
    }
}
```

---

## Changelog

### Added

- `Ray2d` and `Ray3d`
- `Ray2d::new` and `Ray3d::new` constructors
- `Plane2d::new` and `Plane3d::new` constructors

### Removed

- Removed `Ray` in favor of `Ray3d`

### Changed

- `direction` is now a `Direction2d`/`Direction3d` instead of a vector,
which provides guaranteed normalization
- `intersect_plane` now takes a `Plane2d`/`Plane3d` instead of just a
vector for the plane normal
- `Direction2d` and `Direction3d` now derive `Serialize` and
`Deserialize` to preserve ray (de)serialization

## Migration Guide

`Ray` has been renamed to `Ray3d`.

### Ray creation

Before:

```rust
Ray {
    origin: Vec3::ZERO,
    direction: Vec3::new(0.5, 0.6, 0.2).normalize(),
}
```

After:

```rust
// Option 1:
Ray3d {
    origin: Vec3::ZERO,
    direction: Direction3d::new(Vec3::new(0.5, 0.6, 0.2)).unwrap(),
}

// Option 2:
Ray3d::new(Vec3::ZERO, Vec3::new(0.5, 0.6, 0.2))
```

### Plane intersections

Before:

```rust
let result = ray.intersect_plane(Vec2::X, Vec2::Y);
```

After:

```rust
let result = ray.intersect_plane(Vec2::X, Plane2d::new(Vec2::Y));
```
rdrpenguin04 pushed a commit to rdrpenguin04/bevy that referenced this issue Jan 9, 2024
# Add and implement constructors for Primitives

- Adds more Primitive types and adds a constructor for almost all of
them
- Works towards finishing bevyengine#10572 

## Solution

- Created new primitives
    - Torus
    - Conical Frustum
    - Cone
    - Ellipse
- Implemented constructors (`Primitive::new`) for almost every single
other primitive.

---------

Co-authored-by: Joona Aalto <[email protected]>
Co-authored-by: Alice Cecile <[email protected]>
github-merge-queue bot pushed a commit that referenced this issue Jan 29, 2024
# Objective

Working towards finishing a part of #10572, this PR adds a ton of math
helpers and useful constructors for primitive shapes. I also tried
fixing some naming inconsistencies.

## Solution

- Add mathematical helpers like `area`, `volume`, `perimeter`,
`RegularPolygon::inradius` and so on, trying to cover all core
mathematical properties of each shape
- Add some constructors like `Rectangle::from_corners`,
`Cuboid::from_corners` and `Plane3d::from_points`

I also derived `PartialEq` for the shapes where it's trivial. Primitives
like `Line2d` and `Segment2d` are not trivial because you could argue
that they would be equal if they had an opposite direction.

All mathematical methods have tests with reference values computed by
hand or with external tools.

## Todo

- [x] Add tests to verify that the values from mathematical helpers are
correct

---------

Co-authored-by: IQuick 143 <[email protected]>
tjamaan pushed a commit to tjamaan/bevy that referenced this issue Feb 6, 2024
…ne#10632)

# Objective

Working towards finishing a part of bevyengine#10572, this PR adds a ton of math
helpers and useful constructors for primitive shapes. I also tried
fixing some naming inconsistencies.

## Solution

- Add mathematical helpers like `area`, `volume`, `perimeter`,
`RegularPolygon::inradius` and so on, trying to cover all core
mathematical properties of each shape
- Add some constructors like `Rectangle::from_corners`,
`Cuboid::from_corners` and `Plane3d::from_points`

I also derived `PartialEq` for the shapes where it's trivial. Primitives
like `Line2d` and `Segment2d` are not trivial because you could argue
that they would be equal if they had an opposite direction.

All mathematical methods have tests with reference values computed by
hand or with external tools.

## Todo

- [x] Add tests to verify that the values from mathematical helpers are
correct

---------

Co-authored-by: IQuick 143 <[email protected]>
@rparrett
Copy link
Contributor

rparrett commented Mar 1, 2024

Is this tracking issue still being utilized?

Can we add any of

Note that some shapes have behavior that can't be exactly reproduced with the new primitives yet:

From #11773 to the list, if still applicable? Plane subdivision, specifically was a hot topic in Discord recently.

@Jondolf
Copy link
Contributor Author

Jondolf commented Mar 2, 2024

I added the plane subdivision count to the list. The other two aren't as applicable in my opinion; we have AABB types and don't need a Box with min/max extents, and the rectangle flipping is perhaps more of a documentation issue than a separate property that we'd need for the mesh.

github-merge-queue bot pushed a commit that referenced this issue Mar 25, 2024
# Objective

- #10572

There is no 2D primitive available for the common shape of an annulus
(ring).

## Solution

This PR introduces a new type to the existing math primitives:

- `Annulus`: the region between two concentric circles

---

## Changelog

### Added

- `Annulus` primitive to the `bevy_math` crate
- `Annulus` tests (`diameter`, `thickness`, `area`, `perimeter` and
`closest_point` methods)

---------

Co-authored-by: Joona Aalto <[email protected]>
@bugsweeper
Copy link
Contributor

bugsweeper commented Mar 28, 2024

  • Support subdivision for the Plane3d mesh

I think subdivision param for Meshable trait (maybe optional, or maybe in different MeshableExt trait) would be rich feature. It nice to provide not only for Plane3d

github-merge-queue bot pushed a commit that referenced this issue Apr 1, 2024
# Objective

- #10572

There is no 3D primitive available for the common shape of a tetrahedron
(3-simplex).

## Solution

This PR introduces a new type to the existing math primitives:

- `Tetrahedron`: a polyhedron composed of four triangular faces, six
straight edges, and four vertices

---

## Changelog

### Added

- `Tetrahedron` primitive to the `bevy_math` crate
- `Tetrahedron` tests (`area`, `volume` methods)
- `impl_reflect!` declaration for `Tetrahedron` in the `bevy_reflect`
crate
github-merge-queue bot pushed a commit that referenced this issue Apr 1, 2024
# Objective

Related to #10572 
Allow the `Annulus` primitive to be meshed.

## Solution

We introduce a `Meshable` structure, `AnnulusMeshBuilder`, which allows
the `Annulus` primitive to be meshed, leaving optional configuration of
the number of angular sudivisions to the user. Here is a picture of the
annulus's UV-mapping:
<img width="1440" alt="Screenshot 2024-03-26 at 10 39 48 AM"
src="https://github.com/bevyengine/bevy/assets/2975848/b170291d-cba7-441b-90ee-2ad6841eaedb">

Other features are essentially identical to the implementations for
`Circle`/`Ellipse`.

---

## Changelog

- Introduced `AnnulusMeshBuilder`
- Implemented `Meshable` for `Annulus` with `Output =
AnnulusMeshBuilder`
- Implemented `From<Annulus>` and `From<AnnulusMeshBuilder>` for `Mesh`
- Added `impl_reflect!` declaration for `Annulus` and `Triangle3d` in
`bevy_reflect`

---

## Discussion

### Design considerations

The only interesting wrinkle here is that the existing UV-mapping of
`Ellipse` (and hence of `Circle` and `RegularPolygon`) is non-radial
(it's skew-free, created by situating the mesh in a bounding rectangle),
so the UV-mapping of `Annulus` doesn't limit to that of `Circle` as its
inner radius tends to zero, for instance. I don't see this as a real
issue for `Annulus`, which should almost certainly have this kind of
UV-mapping, but I think we ought to at least consider allowing mesh
configuration for `Circle`/`Ellipse` that performs radial UV-mapping
instead. (In these cases in particular, it would be especially easy,
since we wouldn't need a different parameter set in the builder.)

---------

Co-authored-by: Alice Cecile <[email protected]>
chompaa pushed a commit to chompaa/bevy that referenced this issue Apr 5, 2024
)

# Objective

- bevyengine#10572

There is no 3D primitive available for the common shape of a tetrahedron
(3-simplex).

## Solution

This PR introduces a new type to the existing math primitives:

- `Tetrahedron`: a polyhedron composed of four triangular faces, six
straight edges, and four vertices

---

## Changelog

### Added

- `Tetrahedron` primitive to the `bevy_math` crate
- `Tetrahedron` tests (`area`, `volume` methods)
- `impl_reflect!` declaration for `Tetrahedron` in the `bevy_reflect`
crate
chompaa pushed a commit to chompaa/bevy that referenced this issue Apr 5, 2024
# Objective

Related to bevyengine#10572 
Allow the `Annulus` primitive to be meshed.

## Solution

We introduce a `Meshable` structure, `AnnulusMeshBuilder`, which allows
the `Annulus` primitive to be meshed, leaving optional configuration of
the number of angular sudivisions to the user. Here is a picture of the
annulus's UV-mapping:
<img width="1440" alt="Screenshot 2024-03-26 at 10 39 48 AM"
src="https://github.com/bevyengine/bevy/assets/2975848/b170291d-cba7-441b-90ee-2ad6841eaedb">

Other features are essentially identical to the implementations for
`Circle`/`Ellipse`.

---

## Changelog

- Introduced `AnnulusMeshBuilder`
- Implemented `Meshable` for `Annulus` with `Output =
AnnulusMeshBuilder`
- Implemented `From<Annulus>` and `From<AnnulusMeshBuilder>` for `Mesh`
- Added `impl_reflect!` declaration for `Annulus` and `Triangle3d` in
`bevy_reflect`

---

## Discussion

### Design considerations

The only interesting wrinkle here is that the existing UV-mapping of
`Ellipse` (and hence of `Circle` and `RegularPolygon`) is non-radial
(it's skew-free, created by situating the mesh in a bounding rectangle),
so the UV-mapping of `Annulus` doesn't limit to that of `Circle` as its
inner radius tends to zero, for instance. I don't see this as a real
issue for `Annulus`, which should almost certainly have this kind of
UV-mapping, but I think we ought to at least consider allowing mesh
configuration for `Circle`/`Ellipse` that performs radial UV-mapping
instead. (In these cases in particular, it would be especially easy,
since we wouldn't need a different parameter set in the builder.)

---------

Co-authored-by: Alice Cecile <[email protected]>
github-merge-queue bot pushed a commit that referenced this issue Apr 8, 2024
# Objective

- Ongoing work for #10572 
- Implement the `Meshable` trait for `Triangle3d`, allowing 3d triangle
primitives to produce meshes.

## Solution

The `Meshable` trait for `Triangle3d` directly produces a `Mesh`, much
like that of `Triangle2d`. The mesh consists only of a single triangle
(the triangle itself), and its vertex data consists of:
- Vertex positions, which are the triangle's vertices themselves (i.e.
the triangle provides its own coordinates in mesh space directly)
- Normals, which are all the normal of the triangle itself
- Indices, which are directly inferred from the vertex order (note that
this is slightly different than `Triangle2d` which, because of its lower
dimension, has an orientation which can be corrected for so that it
always faces "the right way")
- UV coordinates, which are produced as follows:
1. The first coordinate is coincident with the `ab` direction of the
triangle.
2. The second coordinate maps to be perpendicular to the first in mesh
space, so that the UV-mapping is skew-free.
3. The UV-coordinates map to the smallest rectangle possible containing
the triangle, given the preceding constraints.

Here is a visual demonstration; here, the `ab` direction of the triangle
is horizontal, left to right — the point `c` moves, expanding the
bounding rectangle of the triangle when it pushes past `a` or `b`:

<img width="1440" alt="Screenshot 2024-03-23 at 5 36 01 PM"
src="https://github.com/bevyengine/bevy/assets/2975848/bef4d786-7b82-4207-abd4-ac4557d0f8b8">

<img width="1440" alt="Screenshot 2024-03-23 at 5 38 12 PM"
src="https://github.com/bevyengine/bevy/assets/2975848/c0f72b8f-8e70-46fa-a750-2041ba6dfb78">

<img width="1440" alt="Screenshot 2024-03-23 at 5 37 15 PM"
src="https://github.com/bevyengine/bevy/assets/2975848/db287e4f-2b0b-4fd4-8d71-88f4e7a03b7c">

The UV-mapping of `Triangle2d` has also been changed to use the same
logic.

---

## Changelog

- Implemented `Meshable` for `Triangle3d`.
- Changed UV-mapping of `Triangle2d` to match that of `Triangle3d`.

## Migration Guide

The UV-mapping of `Triangle2d` has changed with this PR; the main
difference is that the UVs are no longer dependent on the triangle's
absolute coordinates, but instead follow translations of the triangle
itself in its definition. If you depended on the old UV-coordinates for
`Triangle2d`, then you will have to update affected areas to use the new
ones which, briefly, can be described as follows:
- The first coordinate is parallel to the line between the first two
vertices of the triangle.
- The second coordinate is orthogonal to this, pointing in the direction
of the third point.

Generally speaking, this means that the first two points will have
coordinates `[_, 0.]`, while the third coordinate will be `[_, 1.]`,
with the exact values depending on the position of the third point
relative to the first two. For acute triangles, the first two vertices
always have UV-coordinates `[0., 0.]` and `[1., 0.]` respectively. For
obtuse triangles, the third point will have coordinate `[0., 1.]` or
`[1., 1.]`, with the coordinate of one of the two other points shifting
to maintain proportionality.

For example: 
- The default `Triangle2d` has UV-coordinates `[0., 0.]`, `[0., 1.]`,
[`0.5, 1.]`.
- The triangle with vertices `vec2(0., 0.)`, `vec2(1., 0.)`, `vec2(2.,
1.)` has UV-coordinates `[0., 0.]`, `[0.5, 0.]`, `[1., 1.]`.
- The triangle with vertices `vec2(0., 0.)`, `vec2(1., 0.)`, `vec2(-2.,
1.)` has UV-coordinates `[2./3., 0.]`, `[1., 0.]`, `[0., 1.]`.

## Discussion

### Design considerations

1. There are a number of ways to UV-map a triangle (at least two of
which are fairly natural); for instance, we could instead declare the
second axis to be essentially `bc` so that the vertices are always `[0.,
0.]`, `[0., 1.]`, and `[1., 0.]`. I chose this method instead because it
is skew-free, so that the sampling from textures has only bilinear
scaling. I think this is better for cases where a relatively "uniform"
texture is mapped to the triangle, but it's possible that we might want
to support the other thing in the future. Thankfully, we already have
the capability of easily expanding to do that with Builders if the need
arises. This could also allow us to provide things like barycentric
subdivision.
2. Presently, the mesh-creation code for `Triangle3d` is set up to never
fail, even in the case that the triangle is degenerate. I have mixed
feelings about this, but none of our other primitive meshes fail, so I
decided to take the same approach. Maybe this is something that could be
worth revisiting in the future across the board.

---------

Co-authored-by: Alice Cecile <[email protected]>
Co-authored-by: Jakub Marcowski <[email protected]>
@lynn-lumen
Copy link
Contributor

I don't understand what is meant by

  • Prism

Considering there already is

  • support converting 2D shapes to 3D shapes (i.e. extrude circle to get cylinder and so on)

which would basically produce a bunch of prisms. In addition, Ramps already cover (at least some) triangular prisms

@lynn-lumen lynn-lumen mentioned this issue May 7, 2024
3 tasks
github-merge-queue bot pushed a commit that referenced this issue May 7, 2024
# Objective

- Adds a basic `Extrusion<T: Primitive2d>` shape, suggestion of #10572 

## Solution

- Adds `Measured2d` and `Measured3d` traits for getting the
perimeter/area or area/volume of shapes. This allows implementing
`.volume()` and `.area()` for all extrusions `Extrusion<T: Primitive2d +
Measured2d>` within `bevy_math`
- All existing perimeter, area and volume implementations for primitves
have been moved into implementations of `Measured2d` and `Measured3d`
- Shapes should be extruded along the Z-axis since an extrusion of depth
`0.` should be equivalent in everything but name to the base shape

## Caviats

- I am not sure about the naming. `Extrusion<T>` could also be
`Prism<T>` and the `MeasuredNd` could also be something like
`MeasuredPrimitiveNd`. If you have any other suggestions, please fell
free to share them :)

## Future work

This PR adds a basic `Extrusion` shape and does not implement a lot of
things you might want it to. Some of the future possibilities include:
- [ ] bounding for extrusions
- [ ] making extrusions work with gizmos
- [ ] meshing

---------

Co-authored-by: Alice Cecile <[email protected]>
@bugsweeper
Copy link
Contributor

bugsweeper commented Jun 11, 2024

  • Support subdivisions

Looks like #13719 and #13580 both relates to subdivisions

@bytemunch
Copy link
Contributor

bytemunch commented Jun 29, 2024

I've got a naive ellipsoid implementation working but it produces meshes identical to a scaled UV sphere, as it uses the sphere UV code with sectors and stacks, substituting variables for a, b, and c where relevant. Is this desirable behaviour or should we strive for a better ellipsoid meshing function?

2024-06-29_164446.mp4

Scaled spheres in the back, ellipsoids in the front

Also the area calculation uses the approximate formula which could be a problem, the maths for integrating everything and getting a closer answer is too much for my brain 🤯

@rparrett
Copy link
Contributor

Any plans for an "annular segment" / should that be added to the list?

@RobWalt
Copy link
Contributor

RobWalt commented Feb 2, 2025

Any plans for an "annular segment" / should that be added to the list?

Sounds good to me. Shouldn't be too diffivult either. I'll glady help with PRs regarding that!

Maybe open a separate issue and link to that one here if you have a need for it!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
A-Math Fundamental domain-agnostic mathematical operations A-Rendering Drawing game state to the screen C-Feature A new feature, making something new possible C-Tracking-Issue An issue that collects information about a broad development initiative
Projects
None yet
Development

No branches or pull requests

7 participants